Dissertation Proposal Discoverability and Interpretability of Spurious Associations in Data-Driven Decisions

Xian Teng 11/23/2021

Committee

- Dr. Yu-Ru Lin (Chair), School of Computing and Information, University of Pittsburgh
- Dr. Rosta Farzan, School of Computing and Information, University of Pittsburgh
- Dr. Peter Brusilovsky, School of Computing and Information, University of Pittsburgh
- Dr. Gregory Cooper, Department of Biomedical Informatics, University of Pittsburgh School of Medicine

Outline

- Motivation and challenge
- Overview of my proposal
- Preliminaries
- Proposed research (incl. preliminary studies)
- Contribution and implication
- Timeline

Motivation and challenge

11 min

revicoles cage films	p=Divorces in Meine
	r=Marganiae coasumption
Spuri	ious correlation
n=cheese esting	CORRELATION DOES NOT EQUAL CAUSATION
y=Fetel when Tengles	
(s=chark ette	TYLER VIGEN
(retonators)	

http://www.tylervigen.com/spurious-correlations

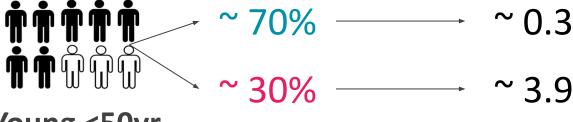
An example of COVID-19 vaccine effectiveness

Nearly 60% of hospitalized COVID-19 patients in Israel fully vaccinated, data shows

Twitter user said "Vaccines DO NOT stop transmissions!"

% of people who are # of vaccinated (unvaccinated) amor

of hospitalized patients per 100K among those who are Vax (Not-Vax)



Young <50yr

% of people who are vaccinated (unvaccinated)

of hospitalized patients per 100K among those who are Vax (Not-Vax)

Efficacy

Simpson's paradox (SP)

A scenario where the marginal (or aggregated) association between a pair of variables – a cause variable X and an outcome variable Y – is different or strictly reversed from the conditional (or subgroup-level) associations.

The answer is simple -- older people like to be vaccinated, meanwhile they are more likely to get severe illness thus hospitalized.

Data can't be lying! Well... but data can be **misleading** if people do not see the whole story, and interpret data incorrectly

An example of COVID-19 misinformation debunking app

Suppose a COVID-19 misinformation debunking APP is developed, an observational study shows that:

62% of users who have used this APP recognize misinformation, but this number is only 38% for those who didn't

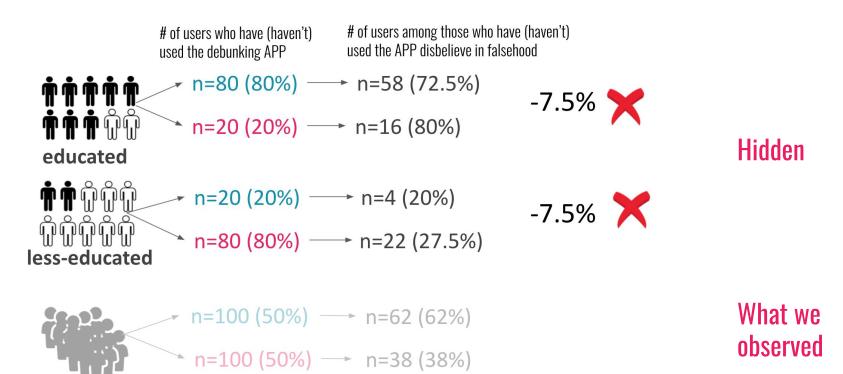
https://www.who.int/news-room/spotlight/let-s-flatten-the-inf odemic-curve

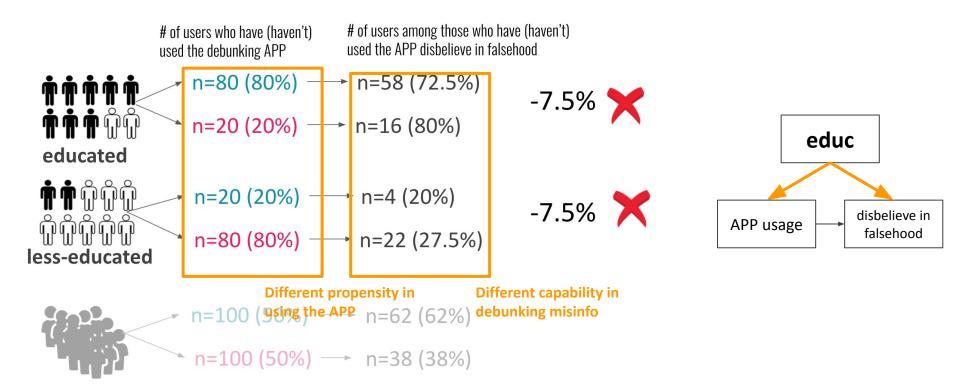
Can we suggest to launch this APP?

∽ n=100 (50%) → n=38 (38%)

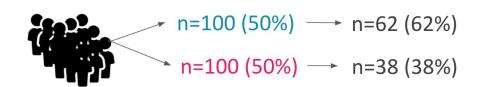
____ n=100 (50%) → n=62 (62%)

What we observed

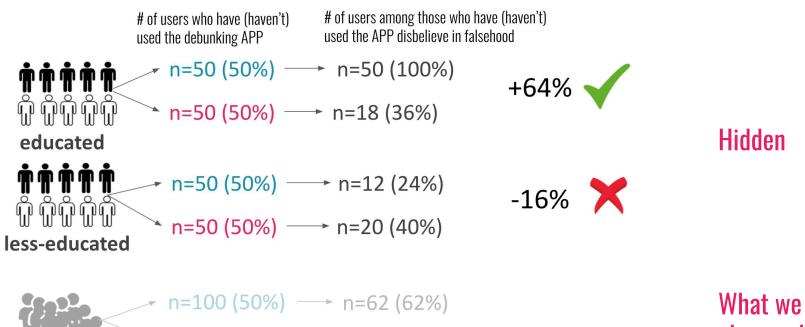




Confounding bias: a scenario where an aggregated X-Y relation is "distorted" by the presence of other hidden variables that are simultaneously influence both X and Y.

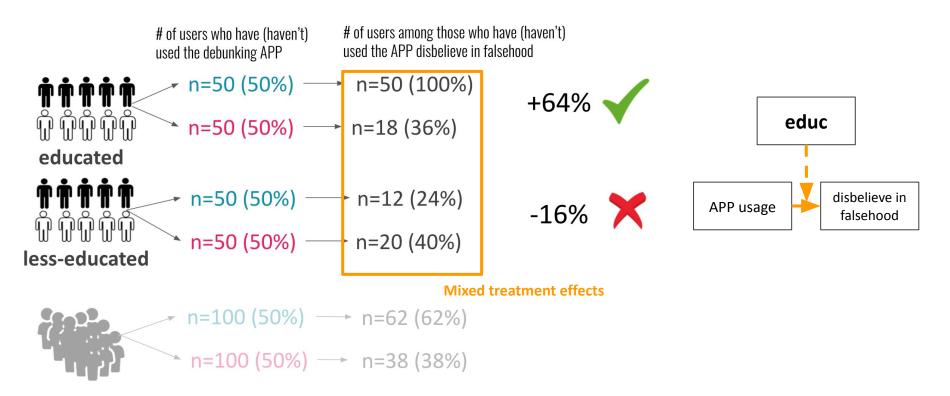


What we observed



∽ n=100 (50%) → n=38 (38%)

observed



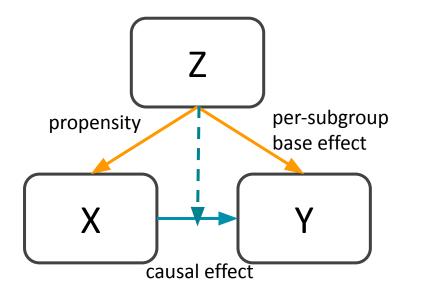
Causal effect heterogeneity: a "biological" phenomenon where the causal effect is different across different subgroups.

SP might lead to harmful consequences

Anti-vaccine sentiment spread on social platform, bad for battling this pandemic

Harmful for less-education people (fairness/equity issues)

Causal explanations of SP



M1. Confounding bias involves

- the Z-X link, the propensity of receiving a certain type of treatment
- the Z-Y link, the base effect characterizing the basic likelihood of getting an outcome of interest without any treatment

M2. Effect heterogeneity involves

- the X-Y link, the direct causal effect
- the Z-(X-Y) link, the effect-modifying effect

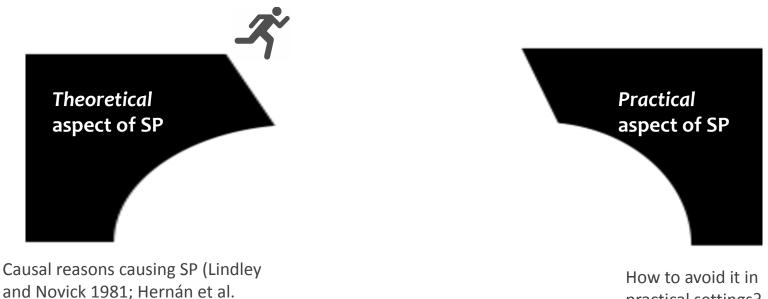
Research question

How can we solve SP-related spurious associations in practical observational studies as well as to support people to make reliable decisions.

Research question

2011; Pearl 2000)

How can we solve SP-related spurious associations in practical observational studies as well as to support people to make fairer and reliable decisions.



practical settings?

Prior efforts to fill the gap

Types	Main idea	Limitations
T1. Statistical tests & clustering analysis (Kievit et al. 2013, Norton and Divine 2015)	Test the independence of each Z with X and Y; Take the learned clusters as possible subgroups	 No guidance of population partition Unsupervised clusters might not invite SP
T2. Partition algorithms (Alipourfard et al. 2018a,b, Correia et al 2020)	Divide samples into subgroups and check paradoxical associations (e.g., stratification)	 Unable to handle high-dimensional Z Neglect within-subgroup confounding and effect heterogeneity (nested SP)
T3. Visualization (Schneiter and Symanzik 2013, Armstrong and Wattenberg 2014, Friendly et al. 2013)	For the purpose of explanation	 Not a general tool in practical data analysis settings

Challenges

C1. Lack of automated discovery of population partition in a high dimensional covariate space. (T1 - no automatic methods, T2- unable to deal with

high-dimensional Z)

C2. Lack of an assessment of a candidate partition.

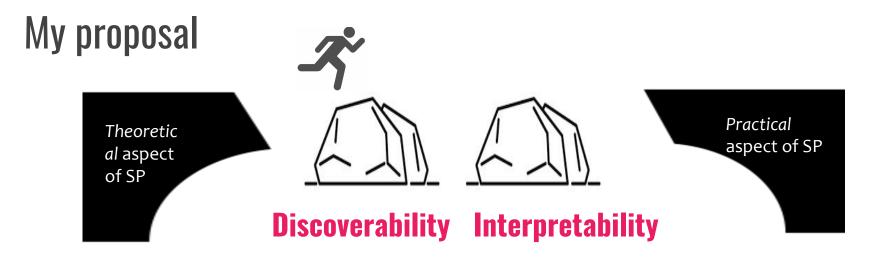
(T2 - neglect within-subgroup confounding and effect heterogeneity)

C3. Lack of an interpretable system in assisting data-driven decision making (T3 - lack general and practical tools)

Overview of my proposal

1 min





- **RC1. [Discoverability]** Detect and characterize subgroups wherein confounding bias is minimized and causal effect is homogeneous.
 - RC1a. Develop algorithms to perform population partitioning (Challenge C1)
 - RC1b. Propose assessment metrics to characterize a candidate partition (Challenge C2)
- **RC2. [Interpretability]** Design a visual analytic system to support visualization and interpretation of Simpson's paradox (Challenge C3).