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ABSTRACT

Detecting anomalous patterns from dynamic and multi-attributed
network systems has been a challenging problem due to the com-
plication of temporal dynamics and the variations reflected in mul-
tiple data sources. We propose a Multi-view Time-Series Hyper-
sphere Learning (MTHL) approach that leverages multi-view learn-
ing and support vector description to tackle this problem. Given
a dynamic network with time-varying edge and node properties,
MTHL projects multi-view time-series data into a shared latent
subspace, and then learns a compact hypersphere surrounding
normal samples with soft constraints. The learned hypersphere
allows for effectively distinguishing normal and abnormal cases.
We further propose an efficient, two-stage alternating optimization
algorithm as a solution to the MTHL. Extensive experiments are
conducted on both synthetic and real datasets. Results demonstrate
that our method outperforms the state-of-the-art baseline meth-
ods in detecting three types of events that involve (i) time-varying
features alone, (ii) time-aggregated features alone, as well as (iii)
both features. Moreover, our approach exhibits consistent and good
performance in face of issues including noises, anomaly pollution
in training phase and data imbalance.
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1 INTRODUCTION

The problem of anomaly detection in dynamic networks has at-
tracted much attention in a broad range of domains, such as trans-
portation, communication, financial systems, and social networks.
Examples include detection of civil unrest using social media data
[6, 25], identification of crowd activities or emergencies in cities
[5, 27, 33] and discovery of network intrusion or network failures
[8, 36]. Particularly with the increasing adoption of ubiquitous
sensors and social mobile technologies, it becomes possible to con-
tinuously collect datasets from multiple data sources (so-called
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“multi-view” datasets) in real time. The continuously-gathered data
allows us to understand the temporal regularities and irregularities
of a dynamic system. Furthermore, data collected from multiple data
sources offer complementary information about the same objects
from various perspectives, which promise the potential of more
effective anomaly detection than those only based on single-view
data.

Over the past decade, a variety of anomaly detection methods in
dynamic networks have been put forward [6, 15, 18, 25, 27, 32, 33,
35, 36]. These methods complement traditional anomaly detectors,
e.g., Support Vector Machines (SVM) [34] and the Local Outlier
Factor (LOF) [4], as the dynamic nature and network structure
have introduced new types of anomalies and challenges. For ex-
ample, Non-Parametric Heterogeneous Graph Scan (NPHGS) [6]
and EventTree+ [33] find anomalous subgraphs with structural
constraint as a way to detect traffic accidents or abnormal crowd
activities. In spite of their success under some situations, these
approaches mainly focus on static or time-aggregated features and
lack the ability of mining time-sensitive anomalous patterns. For
example, EventTree+ directly uses the aggregated activity level
as an attribute for each node, without consideration of the daily
variation of activities. While converting time-varying attributes
into aggregated features is convenient, the process tends to lose
important information in detecting certain anomalies, e.g., anom-
alies with temporal irregularities whereas their time-aggregated
attributes may seem normal.

In addition to single-view approaches, there have been works
dealing with multi-view datasets, including Horizontal Anomaly
Detection (HOAD) [12], Multi-view Low Rank Analysis (MLRA)
[23], Outliers Ranking (OutRank) based on subspace analysis [28]
and anomaly detection by Affinity Propagation (AP) [11, 26]. Most
of these methods focus on inconsistent or different behaviors across
different sources, which is referred to as “horizontal anomaly de-
tection” [12]. However, methods that exploit multi-view data as
complementary information [23] for extracting normal and ab-
normal patterns are less explored. In this paper, we consider that
abnormal events would create a disturbance of regularities across
various views, and by mining such consistent irregular patterns
in multiple data sources, we can achieve a more reliable detection
result than those based on a single view.

Here we propose a novel anomaly detection framework named
“Multi-View Time Series Hypersphere Learning” (MTHL) in dy-
namic networks. Figure 1 illustrates the key idea of our proposed
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Figure 1: Illustration of our MTHL approach. In terms of the network system, node and edge attributes are taken as two
distinct views. The multi-view temporal information is represented as two (or multiple) sets of matrices and then projected
into a shared latent space. MTHL mines the normal pattern (soft boundary between normal and abnormal cases) by learning
a compact hypersphere surrounding reference samples, and detects outliers based on its distance to the hypersphere centroid.

approach. First, to preserve the temporal variation of multiple at-
tributes, we use multivariate time series representation — a chrono-
logically ordered sequence of feature vectors that capture varia-
tion in attribute values. Second, we assume normal samples col-
lected from multiple views would be close to one another in a low-
dimensional latent space. To obtain a good representation of normal
pattern, we leverage Support Vector Data Description (SVDD) [37]
to extract normal patterns. Specifically, MTHL learns a hypersphere
around the reference set and distinguishes normal and abnormal
samples according to their distances to the hypersphere center. Our
contributions can be summarized as follows:

(1) We propose a novel approach called MTHL for anomaly
detection in dynamic networks. By full exploitation of
multi-view time-series data, MTHL is able to detect events
that involve irregular temporal variations, which are easily
neglected by traditional approaches that only depend on
aggregated features.

By leveraging multi-view learning and support vector de-
scription, our approach learns a hypersphere that facilitates
the effective identification of anomalies.

We propose an efficient algorithm which involves two al-
ternating optimization stages, by using gradient descent
and Lagrangian duality theory. In our runtime comparison,
MTHL exhibits the best time performance at the testing
phase.

We conduct extensive experiments on both synthetic and
real-world datasets. Results demonstrate that our method
consistently outperforms the state-of-the-art baseline meth-
ods in face of data imbalance as well as noises and anomaly
pollution during the training phase.

4)

The rest of the paper is organized as follows. In section 2, we
briefly review the related work. In section 3, we present problem def-
inition and notations. Section 4 and 5 describe the proposed MTHL
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approach and its algorithmic solution, respectively. Experimental
evaluation is reported in Section 6, with conclusion in section 7.

2 RELATED WORK

Anomaly Detection in Dynamic Networks. Beyond traditional
anomaly detection, there has been an increasing interest in anomaly
detection in dynamic networks, particularly due to its ability to
describe objects and relationships with time-varying properties
[2, 14, 32].

In the realm of dynamic networks, what forms up an anomalous
object heavily relies on the applications. Detection tasks can span
from detecting abnormal vertices [15, 16, 18] and edges [1, 17, 24],
to identifying anomalous subgraphs [6, 7, 27, 29, 30, 36] and events
[20, 31]. Ji et al. [18] detect local evolutionary outliers (vertices) by
investigating the shifts in community involvement. Li et al. [24]
identify abnormal edges in vehicle traffic networks by studying
edge weight evolution. In terms of anomalous subgraphs, Chen et al.
[7] focus on community behaviors and propose to detect six types of
community-based anomalies: grown, shrunken, merged, split, born,
and vanished communities. Mongiovi et al. [27] design a method,
called “NetSpot”, to find the significant anomalous regions (i.e. a
set of adjacent, connected links) and time intervals. A series of scan
statistics based approaches [6, 29, 30] are also developed to detect
anomalous clusters though subset searching in the spatio-temporal
domain.

Many prior works deal with dynamic networks by partitioning
the stream data into discrete time windows and then construct ag-
gregated features as the “so-called” temporal properties. Instead, we
approach the problem by conducting a fine investigation regarding
how the system evolves within each time window. Another differ-
ence lies in that our approach is developed from the perspective of
multi-view learning, so that it can make use of the mutual-support
data sources to achieve better results.
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Multi-view Learning. The existence of multiple data sources
has inspired a lot of works conducted in the multi-view setting, such
as multi-view clustering [3, 11, 21], subspace learning [13, 38, 39],
multi-view classification [19, 22] and multi-view outliers detection
[12, 23, 26, 28]. The most relevant work to our paper is multi-view
outlier detection.

Gao et al. [12] were the first to study horizontal anomalies by
exploring the inconsistent behaviors across different views. In their
work, they proposed a clustered-based approach, called Horizontal
Anomaly Detection (HOAD). In specific, HOAD performs clustering
simultaneously with all views, and marks those objects belonging to
different clusters as outliers. Alvarez et al. [26] approached the simi-
lar problem by an affinity propagation (AP) based method. However,
both HOAD and AP are designed for one type of outliers. As Li et
al. [23] have pointed out, there are two types of anomalies under
the multi-view setting: Type I outlier is the so-called “horizontal
outlier” proposed in HOAD paper [12]; Type II outliers refer to the
ones that display anomalous patterns in each single view. They
develop a Multi-View Low-Rank Analysis (MLRA) approach to si-
multaneously detect both types of anomalies. Despite that, Type II
outlier detection still needs further exploration, so we restrict the
scope of this paper to the second category. Furthermore, none of
these introduced works are conducted in the realm of time-varying
network systems. Therefore, we will make a contribution from this
direction.

3 PROBLEM DEFINITION

In this section, we introduce definitions, notations and problem
formulation. Table 1 lists the notations used in this paper.

Definition 3.1. Dynamic Network. A dynamic network is de-
fined as a directed network G(t) = {V, &, z(t), w(t)}, where V
denotes the set of vertices, and & C V x V refers to the set of
directed edges, z is a vertex mapping function: YV — R% that maps
vertex i to its d,-dimensional feature vector z;(¢) at each time step
t, w is an edge mapping function: & — R which associates each
edge e;;j (from i to j) with a edge-specific value w;;(t) at each time
step t.

Such representation of dynamic networks can be used to de-
scribe a variety of systems in the real world, such as an urban area
consisting of small regions, a financial system connecting banks,
and a social network composed of users and institutions. In those
networked systems, we are interested in detecting which units
(e.g., regions, banks and users) are anomalous compared to their
regular norms. Therefore, for each vertex i, we transform edge
attributes into a second view of “vertex attribute” by considering
all edges connected with it, i.e. w; = {w; w_>}T where w_ and
w_, are features for incoming and outgoing edges. While we focus
on two views capturing node and edge attributes in this work, it
can be generalized into a more generic framework with more views
involved.

Definition 3.2. Multi-view Multivariate Time-Series. A multi-
view multivariate time series can be denoted as {X%,v =1,...,V},
where V denotes the number of views, and X? € RAoXT represents
the time series collected from v-th view. Here d, is the number of
attributes and T is the number of time steps in a time window. Each
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Table 1: Notation Definition.

Notation Definition

G(t) Attributed dynamic network

X Reference data set

X Multivariate time-series for view v

do, T Feature and temporal dimensions of X
Vv Number of views

m Number of reference samples

pPv, Qv Bilinear projection matrices

Yy Projection in latent space

(Y*,R) Hypersphere (center and radius)

Le Temporal Laplacian matrix
f=0+®+ ¥ Objective function

p.q Reduced feature and temporal dimensions

£ Slack variable

A1, A2 Penalty and trade-off parameters in f

t Weighting parameter in ©

df; dl?’ Pairwise and average distance

a, p Lagrangian multipliers

L Optimization goal derived by Lagrangian duality
[0) Kernel function

o Gaussian noise parameter

v Anomaly pollution parameter

1) Data imbalance parameter

row of X¥ records the temporal variation for each attribute, and
each column represents the observation of all attributes at each
time step.

In our case of dynamic networks, the view X 1 corresponds to
the node attribute {z(1), ..., z(T)} € R%*T and the view X? corre-
sponds to {w(1),...,w(T)} € R9XT  The multi-view multivariate
time-series data captures temporal information for all measure-
ments during each time window T, allowing for discovering anom-
alies that involve temporal irregularities. We formally formulate
our problem as follows.

Definition 3.3. Dynamic Multi-view Anomaly Detection. For
each vertex in a dynamic network, let X = {Xl.v|i =1,...mv =
1,..., V} denote a set of historical observations, also called “refer-
ence set”. Here m is the number of samples in each view, so that
there are mV elements in X. Given a new observation {X%|v =
1, ..., V} for this vertex, our goal is to determine whether it is normal
or abnormal in comparison with the reference set X.

4 MULTI-VIEW TIME-SERIES HYPERSPHERE
LEARNING (MTHL)

4.1 Motivation

To approach the above defined problem, we first need to learn a
good representation of normal patterns from reference data set;
based on the learned representation, we can identify anomalous
cases or measure the strength of anomalousness. Here we note that
several critical points should be carefully considered:



Session 4C: Outliers and Anomaly Detection

(1) How to extract the intrinsic patterns for both feature and
temporal information from high dimensional time-series
data;

(2) How to integrate time-series samples from different views
to promote anomaly detection;

(3) How to discriminate normal and anomalous cases accord-
ing to the reference set.

To deal with the first challenge, we leverage a bilinear dimen-
sionality reduction approach [22]. Dimensionality reduction has
been widely used in data mining to extract important properties
by filtering out redundancy and noise. Here we seek to preserve
both feature and temporal structures that are useful for anomaly
detection. Therefore, we learn a pair of bilinear projections to re-
duce feature and temporal dimensionality, respectively. The second
problem requires mitigating the gap between different views and
coordinating information across views. For this purpose, we employ
a strategy in the multi-view learning field [9, 13, 22]: assuming that
multi-view data share the same low-dimensional latent subspace.
Finally, for the third question, we leverage support vector data de-
scription (SVDD) [37] with latent space projection to distinguish
abnormal observations from normal ones.

4.2 Objective function

We introduce the objective function, which contains three compo-
nents: reconstruction error from bilinear projection, hypersphere
learning and temporal smoothing regularization.

Reconstruction error. Given a reference set of time-series sam-
ples X = {Xi”|i =1,..,mv =1,...,V}, for each view v we seek to
learn a pair of bilinear projections, P? € R4%*? and Q¥ € R9*4,
to reduce both feature and time dimensionality, where p and g are
the reduced dimensions. For an arbitrary sample X7 in view v, we
map it into Y7 = PUTX;’Q”, where Y; € RP*Y is the correspond-
ing low-dimensional representation. To force normal samples to
be as close as possible, we impose a strict constraint: all reference
samples share the same low-dimensional representation Y*. To
minimize average reconstruction errors, we have the first part in
the loss function:

2
O(P?, Q% Y*) =1 p*Txvov -y, (1)
S3lrerl,
with the constraints:
PPTPY =1,,0°TQ% = 1,0 = 1,.., V. )

where 7 is a normalization parameter equal to 1/mV, and the bilin-
ear projections are semi-orthogonal matrices.

Hypersphere learning. Analogous to SVDD [37], after pro-
jecting data into a latent subspace, we try to obtain a compact
hypersphere (Y*, R) via minimizing the radius R:

®(P°,Q%,Y*,R) = R?, 3)

with the constraints:

PUTXPQY - Y* @)

2 2
<R%i=1,..,m.
F
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To deal with the cases where the given reference set includes a
small fraction of anomalies, we revise ® as follows:

PY.QVY R =R+ 1 ) (5)

with the constraints:

2
PoTx?Qv - v* 5 S RE+ & i=1,...mov=1,..,V, (6

£ >0i=1,..mv=1,.V. (7)
where the additional slack variables {7 > 0 are added to account
for data outside the boundary, and the positive parameter 1; is to
penalize large distance.

Temporal smoothing regularization. In practice, many sys-
tems that can be described by dynamic networks, tend to slightly
change over time. In fact, temporal fluctuations in many situations
can be considered as an indicator of anomalies. To ensure the local
smoothness, we incorporate a temporal smoothing regularization.
For P?TX?, the t-th column P*TX Y(-, t) represents the feature
vector at time step t, and the discrepancy between consecutive time
steps is minimized.

% Z Cyrym

t/’ t/’
- Z P‘UTXz}(., ")Dyp XV (-, t/)TPv
7
_ Z PUTXU(-, t)Cprr XP (., t//)TPv
Nz

= Tr (P” Txo(p - C)X“TP”)

P’UTX’U(‘! t/) _ PUTXU(', t//)

2
¥(P?) .

= Tr (PUTX”LCX”TP”),

where C is a predefined matrix with each entry Cy s indicating
how much weight is given to penalize the discrepancy between
the ¢’-th and ¢”’-th columns, D is a diagonal matrix with entries
Dyrpr = Y4 Cpryr, L is the Laplacian matrix associated with C,
and Tr(-) means the trace of a matrix. Here we define the prior
weighting matrix C in a simple way:

C =t
e 0

In this case, the successive columns in PYX? within s steps are
forced to be similar. In this paper, s is empirically chosen to be 2.
Other more sophisticatedly designed weight matrices can also be
employed.

MTHL Objective function. By putting Eq. (1), (5), (8) together,
we have the following MTHL objective function:

[t/ —t"| <5,

otherwise.

i =min{®+d+ V¥

m#nf(P) m;)n{ +d+ }
i T <2
_n’;én{’[ §v §i [P xzoe - v

R A ) Y&
v i
+ Y 3 (P“TXfLPXfTP“)},
v i
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subject to Eq. (2),(6) and (7). The set # = {PY,QY,Y*,R, ¢} is
our optimization goal. In summary, the first term is normalized
reconstruction error which encourages samples close to the centroid
Y*, the second term minimizes the volume of hypersphere (Y*, R),
and the third term is a temporal smoothing regularization to prevent
dramatic fluctuations. A is the trade-off parameter that balances
the influence of the third term.

4.3 Weighted reconstruction error.

In Eq. (9), the reconstruction error uses a uniform normalization
parameter 7, without considering the difference among the time-
series in the reference set. However, it is possible that the reference
set might contain a small number of anomalous instances, which we
refer as “anomaly pollution”. To augment the robustness towards
anomaly pollution, we extend the objective function in Eq. (9) by
rewrite © as a weighted reconstruction error:

mlnf(P) mln{zz
R? +AIZZ§.

IR (PvTfoprTPv)},
v

where 3, >; 77 = 1.

We assign such 77 by exploiting pairwise distance between sam-
ples in reference data set. We assume that the true normal samples
tend to locate closely to each other, whereas the anomalous ones
tend to be far away from normal clusters. Therefore, we calculate
the pairwise distance (dissimilarity) for each view v via:

PvTXU v _y* 2
F

(10)

2
v
-x7||. (11)

Given an arbitrary vertex i, we can obtain its average distance to
all other samples:

d;;:’xv

(12)

Based on d_}’, we further define the weighting parameter 7 by the
following exponential function:
= e,

where 7 is a normalization parameter.

(13)

5 SOLUTION: TWO-STAGE ALTERNATIVE
OPTIMIZATION ALGORITHM

Eq. (10) is not a jointly convex optimization problem for all variables
P, but if the bilinear projections {P?, Q%} are fixed, it will become
a traditional convex optimization in terms of {Y*, R, £}. Therefore,
we determine to divide the problem into two alternating stages.
In stage I, we use gradient descent to update {P?, QV}; In stage I,
we keep {PY,Q%} fixed, and employ Lagrange duality theory to
optimize {Y*, R, £}.

Stage I. Gradient descent. We alternately update PY and Q¢
by following the rules:
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v po_,Of

P” «P —YW, (14)
v OY_ af

Q Q Y00 (15)

where y is the learning rate. The partial derivatives can be repre-
sented as:

af r9X? T voT pv xT v vT pov
apv_zz x2Qv(Q*Tx¥TpY — v )+2)LZZX L,x°Tp,
(16)
of _, Z 2x?Tpr(peTxv Qv - v*). (17)

an - 1 1 1

Stage II. Lagrangian duality. Given a fixed pair of bilinear
projections {PY, Q?}, we can obtain a set of low-dimensional repre-
sentations Y = {Ylv eRPX|i=1,..,m,v=1,..,V}. Inthe shared
space, we do not distinguish views, hence we remove superscript v
and rewrite Yl.”,rz’,fiv asY={Yjli=1,..mV},{r]i=1,...,mV}
and {&;]i = 1,...,mV}. The temporal smoothing regularization ¥
only depends on P?, it will not be included in this stage. In light of
Lagrangian duality theory, the constraints can be incorporated into
Eq. (10) via Lagrangian multipliers:

LRY"Eap)= Y wllVi =Yg+ R+ 1 ) &
i :

’ (
- Z a; (R2 +&—|vi- Y*H;) - Zﬂi&,

where o; > 0 and f8; > 0 are Lagrangian multipliers. The dual prob-
lem suggests that £ should be minimized with respect to {R, Y*, £}
and then maximized with respect to {a, f}:

max Rmm LR Y Ea,p). (19)
Setting partial derivatives to zeros gives the constraints:
0L
—R=0=>Zi:a,~=1, (20)
oL . 1
S =0= Y= EZ(THai)Yi, (21)
oL
6_&:0:>A1_al_ﬁi:0. (22)

Re-substituting Eq. (20), (21), (22) into Eq. (18) can result in:

max £(a) = max { Z(Ti +a;i)(Yi, Yi)

! (23)

- % Z(Ti +a;)(zj + aj)p(Yi, Yj)}s
i,j

where $(Y;, Yj) = Tr(Y; YjT) is our kernel function. To resolve the
quadratic optimization problem in Eq. (23) in terms of a, we apply
the Sequential Minimal Optimization (SMO)-type decomposition
method proposed by Fan et al. [10] that achieves linear convergence.
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According to the Kuhn-Tucker conditions for optimality, we have
the following equations:

2
ai(R+& - ||vi - Y*|[) =0, (24)
Bi&i = 0. (25)
which are equivalent to:
|2
ai=0,pi =N = ||Yi—Y “FSRZ’»&:O’ (26)

0<ai<A,0<fi<A & ||Yi_Y*||i'=R29§i=0a (27)

ai=Afi=0 = |i-Y|L2R&a20 (29

From the above three scenarios we can see that: most data are

located inside the hypersphere with «; = 0, they make no contribu-
tion. Only those samples with @; > 0 play a role in determining the
hypersphere (so-called “support vectors”). With the solution of «,
we can calculate Y* based on Eq. (21), and obtain the radius R by:

R® = (Y., Yk)—zi:(fi+0€i)¢(Yka Yi)"’i ;(Tﬁai)(fﬁaj)ﬁf)(l/i, Yj),

(29)
for any Y on the boundary with 0 < a; < A;.

Computational complexity. The whole process for MTHL al-
gorithm is summarized in Table 2. In particular, steps 6-7 describe
Stage I, and steps 10-11 describe Stage II. The loop will continue
until the objective function converges. Inside the loop, the com-
putational cost can be divided into two parts. In stage I, time is
mainly spent on steps 6 and 7, which costs O(m - (dyTq + dupq +
dUTz)) and O(m - (d,Tp + Tpq)) for each view v, respectively.
As max(p, q) < min(dy, T), the time for each view v reduces to
O(m-(dyT? +dyT)). When the sample size is way larger than data
dimensions m > max(dy, T), stage I (steps 6-9) is approximately
linear to the total sample size O(mV) with all views. Similarly, the
mapping process (step 8) also costs O(mV).

In stage II, the most expensive calculation is step 10, resolving
the quadratic optimization problem. As we employ the SMO-type
decomposition method that modifies two elements in « per iteration,
its time complexity heavily depends on the selection of those two
elements, referred to as Working Set Selection (WSS). Fan et al. [10]
propose a WSS technique using second order information, which
has time complexity O(I) where [ is sample size (I = mV). And the
WSS also guarantees linear convergence. To summarize, stage II
does not cost a lot more than O(mV).

Provided the estimated linear time complexity in each loop, along
with the fact that our algorithm always converges after several iter-
ations, we come to the conclusion that our method can be applied
in large-scale datasets.

6 EXPERIMENTS

In this section, we first introduce the datasets, performance evalua-
tion, and then report our experimental results.

6.1 Dataset

Synthetic data. We simulate a dynamic network G(t) to produce
synthetic multi-view time-series data. For example, G(¢) can be
considered as a city that consists of a set of zones denoted by V,
and & are edges reflecting the traffic, z(t) can represent any location-
specific feature, such as a location’s functionalities or topics, w(t)
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Table 2: MTHL Algorithm.

MTHL Algorithm: Optimize Eq. (10)

Input: Multi-view time-series X%, parameters y, A1, A2, s, p, q,
and maximum iteration maxlIter;
Output: Bilinear projections {P¥, OV}, hypersphere {Y*, R};

1:  Normalize time-series samples X© for each view v;
2:  Compute the Laplacian matrix L using s;
3: Initialize P, QY, Y*;
4: For loop iter from 1 to maxIter do
5: /* Stage I: gradient descent */
6: Compute new P? for each v via Eq. (16), orthogonalize it;
7: Compute new QY for each v via Eq. (17), orthogonalize it;
8: Mapping all X? into the latent space by P*TX?Q?;
9: /*Stage II: Lagrangian duality”/

10: Optimize Eq. (23) to obtain «;

11: Calculate objective function f based on Eq. (10);

12: If f converges, do

13: Compute Y* according to Eq. (21);

14: Compute R according to Eq. (29);

15: return PY, Q% Y*,R;

16: else

17: Continue;

18: end if

19: end for

can be taken as temporal traffic flows, and T denotes one day (24
hours). Based on Definition 3.2, we have {z(1),...,z(T)} € R4=xT
in which each column is snapshot of topic distribution at time ¢,
as well as {w(1), ..., w(T)} € R%*T in which each column is the
snapshot of transportations at time t. From z and w, we can form
up two aggregated features: one is aggregated topic vector Z € R=
by summing up z’s rows, and the other one is aggregated traffic
vector W € R4 by summing up w’s rows.

We generate data in three steps: (1) build a network, (2) assign
normal attributes, and (3) insert anomalies. In step (1), we apply a
random graph generator to construct an underlying network struc-
ture; For step (2), we assign normal attributes for each edge and each
vertex. Given an arbitrary vertex, we generate a d,-dimensional
aggregated topic distribution Z from a predefined Dirichelet distri-
bution Dir(a;) and then divide each topic share into T time steps
according to another Dirichelet distribution Dir(er). Here Dir(a;)
determines topic distribution while Dir(ar) determines temporal
separation. Traffic data are generated by first assigning daily flow
to each edge from a uniform distribution with range [0, 1], and then
segmenting the flow amount into T time steps based on the tem-
poral Dirichelet Dir(ar). For step (3), we randomly select a subset
of vertices and override the assigned attributes in order to inject
anomalies.

NYC taxi trips and social media data. We obtain a set of New
York City (NYC) taxi trip data from July 2016 to December 2016 !.
Each trip records the detailed information like pick up time, pick
up location, drop off time and drop off location etc. In addition, we

Lwww.nyc.gov/html/tle/html/about/tri_record_data.shtml
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Figure 2: Performances versus anomaly pollution v for three types of anomalies. There are 50 samples in the reference dataset.

Parameters are 11 = 0.1,1; = 1.0,0 = 0.1, v = 20%.
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Figure 4: Performances versus data imbalance « for three types of anomalies. There are 50 samples in the reference dataset.

Parameters are 1; = 0.1,1, = 1.0,v = 8%,0 = 0.1.

also collect Twitter streaming data during the same period of time
(from July 2016 to December 2016).

Due to data sparsity, we limit our analysis to the Manhattan area.
We extract all trips that are relevant to Manhattan (pick up or drop
off in Manhattan), and filter out all geo-tagged tweets posted in
this area. In total, there are more than 41 million trips, and about
11 million tweets. Based on administrative boundaries, Manhattan
borough can be partitioned into 69 zones (taken as vertices), and
the taxi trips are used to construct directed edges. Tweets are al-
located into corresponding zones by coordinate information (i.e.,
longitude and latitude), so that zone-specific topic distribution can
be obtained. Topic distribution and taxi trip constitute two different
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views for mining normal patterns and detecting anomalous phe-
nomena. Finally, we divide a day into 6 slices (4 hours per slice),
and obtain two types of multivariate time-series samples.

6.2 Performance Evaluation

Baseline methods. We compare our MTHL algorithm with the fol-
lowing approaches: One-Class Support Vector Machines (One-Class
SVM) [34], the Local Outlier Factor (LOF) [4], Non-Parametric Het-
erogeneous Graph Scan (NPHGS) [6] and EventTree+ [33]. Among
them, One-Class SVM and LOF are two domain-independent method-
ologies as they take common feature vectors as inputs. In our case,
we construct the feature vectors by combining both vertex and edge
attributes. NPHGS and EventTree+ are two existing state-of-the-
art event detection algorithms that operate on dynamic networks.
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Both of them define events as subgraphs. NPHGS detects events
by finding a connected subgraph that optimizes a nonparametric
scan statistic. Although NPHGS is designed for heterogeneous net-
works, the algorithm can also be employed in homogeneous ones
[6]. Besides, EventTree+ detects events through finding a compact
subset of vertices that have short distances but high activity level.
To apply this algorithm to our synthetic data, we set the distances
between all pairs of vertices as 1, and compute the dissimilarity of
the current feature vector with the average vector of reference data
as node activity level.

Evaluation matrics. The study focuses on detection of three
types of anomalies: Type I anomaly only involves changes in ag-
gregated attributes while temporal feature is normal (AGR=True,
TPR=False), Type II anomaly only involves changes in temporal at-
tributes but aggregated features are constant (AGR=False, TPR=True),
and Type IIT anomaly involves changes in both types of attributes
(AGR=True, TPR=True). In the field of anomaly detection, data is
usually highly imbalanced (a small number of outliers). Therefore,
in this paper we choose to use Kappa statistic as evaluation ma-
tric. Kappa statistic is a comparison of the overall accuracy to the
expected random chance accuracy:

Kappa = (accuracy — expected accuracy).

30
1 — expected accuracy (30)

Positive value implies that the proposed algorithm performs better
than random guessing, while negative value shows the other way
around.

6.3 Experimental Results

We study MTHL's performance from three aspects: performance
versus anomaly pollution, performance versus noise, and perfor-
mance versus data imbalance. The degree of anomaly pollution is
denoted as v to indicate the percentage of abnormal samples in
the reference data. The strength of noise is denoted by ¢ which
is the Gaussian deviation. Data imbalance w is measured by the
percentage of anomalies we have injected in the networks.
Performance versus anomaly pollution. We first examine
the performance of MTHL and baselines in terms of anomaly pol-
lution. Figure 2(a-c) show the comparison results for three types
of anomalies. Bar chart represents average value and error bars
represent standard deviation. Each result is obtained from 100 trials
(10 networks and 10 trials per network). Generally, MTHL algo-
rithm has the highest Kappa statistic (nearly 1 when v < 8%) over
all baseline methods across all types of anomalies. In particular,
the baselines have limited capabilities in terms of Type II anomaly
detection, in contrast, our proposed MTHL algorithm can give very
promising results. Among all methods, NPHGS obtains negative
Kappa statistic (worse than random guessing). The reason is that,
NPHGS needs a large number of historical records to obtain good
results, but in our case only 50 instances are provided. Additional
experiments show that if we increase the volume of the reference
dataset, NPHGS will exhibit better performance. This observation
highlights another advantage of our method, i.e., it only requires a
small number of historical records to give satisfactory results.
Performance versus noise. We also examine the robustness of
different methods towards noise. The comparison result is shown in
Figure 3. Similarly, MTHL outperforms all other baselines under all
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cases. In particular, its superiority is more prominent under Type
II situation. When ¢ becomes larger than 0.9, EventTree+, LOF
and One-Class SVM become nearly equivalent to random guessing,
whereas our MTHL approach still shows great advantage with
approximately 0.75 Kappa value.

Performance versus data imbalance. As in many applica-
tions, anomalies tend to exist for only a small fraction. Hence, we
seek to examine MTHL’s performance in dealing with imbalanced
data. Figure 4 provides the comparison results in terms of different
imbalance levels. It reveals that it is more difficult for MTHL and
baselines to cope with highly imbalanced data (for the case of 1%
anomalies). But in general, MTHL still obtains better detection accu-
racy than all other baselines, and such superiority is more evident
in Type II case.

Parameter sensitivity. In our model, there are two major pa-
rameters A1 and A2. The first one A1 controls the strength of penalty
we impose on anomalies in the reference data; the second parame-
ter A controls the influence of temporal smoothing regularization.
Figure 5 shows the sensitivity of two parameters under Type II case
with balanced data. We jointly present precision and recall. From
the figure, we can observe that decreasing A; induces significant
decline in precision, while increasing A; results in significant drop
in recall. This phenomenon can be well explained. If the A; is set
too large, the samples would to be forced to be inside the hyper-
sphere and the radius R would be very large. In this way, MTHL
is more likely to take true anomalies as normal samples and thus
obtains a low recall value. One the other hand, if 11 is set too small,
there is nearly no penalty effect on samples located outside the
hypersphere and a small radius R is learned. With a small radius R,
MTHL would probably take true normal samples as abnormal ones,
and thus obtains a low precision. To balance the effect of precision
and recall, we choose A1 = 0.1 in our algorithm. In terms of Az,
we also observe mixed results. In a similar way, we select a value
A2 = 1.0 by jointly considering precision and recall performance.
In addition, we find that if A, is less than 1.0, the convergence time
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Table 3: Runtime Results.

Method Train Time (sec) Test Time (sec)
MTHL 78.60 (£8.33) 0.007 (6 X 107%)
EventTree+ 0.32 (£0.08) 238.18 (£22.87)
NPHGS 150.17 (£33.37)  3.05 (+0.68)

One-Class SVM 0016 (+1 x 107%)
LOF

0.067 (+5 x 10™%)
0.14 (4 x 1073)

would significantly increase to a higher level. This observation also
validates our choice of 15 = 1.0.

Runtime results. Table 3 shows the runtime comparison be-
tween our MTHL and baseline methods. In particular, we report
training and test runtime separately for each method (except for
LOF). For MTHL, training time refers to the time spent on hyper-
sphere learning using the reference dataset, and test time refers to
the time used to decide whether a new observation is abnormal or
not. It reveals that MTHL can make a very fast decision within one
millisecond. This observation is crucial because many applications
require timely and fast decision making. In contrast, EventTree+
spends much more time (nearly 4 minutes) in test stage. Although
NPHGS costs little time to test new observations, it costs twice as
much time as MTHL in the training stage. Actually, in the training
stage, NPHGS needs to calculate empirical p-values by compar-
ing the current observation to each historical record. That means
NPHGS runtime is highly dependent on the size of the reference
dataset. One-Class SVM and LOF are two fast approaches, taking
the least total time in the anomaly detection process. To summa-
rize, our proposed algorithm can obtain the best performance by
spending the comparable least time like One-Class SVM and LOF.

Case study in real-world data. In Figure 6, we show two im-
portant events occurred in Manhattan: (a) Post-Election Day on
November 10, 2016 and (b) New Year’s Eve on December 31, 2016.
In each example, we shows the anomalous zones detected by our
proposed algorithm MTHL (left panel) and by EventTree+ (right
panel). As MTHL can output anomaly scores, we use dark color
to indicate a large value. For EventTree+ algorithm, we integrate
traffic and topic features into one single vector, and consider each
zone’s dissimilarity to its regular norm as the so-called attribute
“activity level”. Unlike MTHL, it outputs binary labels. For both
methods, we take the preceding 30 days as a basis to construct
reference dataset.

Figure 6(a) shows the anomalous regions detected for the post-
election day (November 10, 2016). Donald Trump was elected to
be the 45th president of the United States on November 9, 2016.
Trump’s victory sparked nationwide Anti-Trump protests during
the following days 2. Trump’s opponents either took the street
or turned to social media to express their opposition to Trump’s
policies. By comparison, we can see that MTHL obtains more mean-
ingful detection results. In specifically, MTHL (left panel) suggests
that Midtown Center, Midtown East, Upper Manhattan and Green-
wich Village exhibit anomalous activities. Considering that those

https://www.nytimes.com/interactive/2016/11/12/us/elections/
photographs-from-anti- trump-protests.html
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zones are either near to Trump real estate or the places where uni-
versities and colleges are located (marked on maps), anomalous
behaviors are more likely to emerge. However, EventTree+ (right
panel) fails to detect those critical zones.

Figure 6(b) shows the anomalous regions detected for the New
Year’s Eve (December 31, 2016). MTHL (left panel) tells that Times
Square and the nearby zones seem to be anomalous. This observa-
tion is probably related to the traditional event “Ball Drop” held at
Times Square (marked on map) every year. It is reported that an
estimated one million people gather in Times Square to celebrate
the festival and watch musical performances at that night . This
large-scale gathering of people would influence the traffics in neigh-
boring areas; therefore, we can observe anomalous phenomena in
Midtown Manhattan and Upper East Side. In contrast, EventTree+
(right panel) considers half of Manhattan area as anomalous zones,
which provides less practical value.

To summarize, the two events in New York City have demon-
strated that our proposed MTHL can obtain reliable and meaningful
detection results, which suggests its potential application in a real-
world domain.

7 CONCLUSIONS

In this paper, we develop a novel MTHL framework for anomaly de-
tection in dynamic networks. Compared to traditional techniques,
our proposed MTHL has prominent superiority in detecting events
that involves anomalous temporal dynamics. Our work highlights
the necessity of the extraction of temporal patterns, and the ex-
ploitation of multiple data sources. As part of future work, we plan
to relax the assumption that the streaming data can be partitioned
into short, periodic and well-aligned temporal segments having
similar patterns. Instead, we seek to mine the evolution pattern in
the infinite time span in order to detect more potential anomalies.
In addition, we plan to incorporate the interplay among individual
objects (e.g., vertices or edges) into analysis, so as to detect large-
scale anomalies across regions or to predict anomaly spreading in
networks.
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