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STOCAST: Stochastic Disease Forecasting With
Progression Uncertainty

Xian Teng

Abstraci—Forecasting patients’ disease progressions
with rich longitudinal clinical data has drawn much at-
tention in recent years due to its impactful application
in healthcare and the medical field. Researchers have
tackled this problem by leveraging traditional machine
learning, statistical techniques and deep learning based
models. However, existing methods suffer from either
deterministic internal structures or over-simplified stochas-
tic components, failing to deal with complex uncertain
scenarios such as progression uncertainty (i.e., multi-
ple possible trajectories) and data uncertainty (i.e., im-
precise observations and misdiagnosis). To overcome
these major uncertainty issues, we propose a novel
deep generative model, Stochastic Disease Forecasting
Model (STOCAST), along with an associated neural network
architecture STOCASTNET, that can be trained efficiently via
stochastic optimization techniques. Our STOCAST model
uses internal stochastic components to deal with depar-
tures of observed data from patients’ true health states,
and more importantly, is able to produce a comprehen-
sive estimate of future disease progression trajectories.
Based on two public datasets related to Alzheimer’s dis-
ease and Parkinson’s disease, we demonstrate how our
STOCAST model achieves robust and superior performance
than deterministic baseline approaches, and conveys richer
information that can potentially assist doctors to make
decisions with greater confidence in a complex uncertain
scenario.

Index Terms—Disease forecasting, deep generative
models, progression uncertainty, neural networks.

[. INTRODUCTION

HANKS to the rapid development of modern healthcare
T systems, Electronic Health Records (EHR) have been
extensively used in smart healthcare applications. EHR data
contain longitudinal health information, such as clinical tests,
cognitive assessments, medication and procedures, allowing for
tracking patient health status at each specific time throughout
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their medical history. With such rich EHR data, one important
question is how to model patients’ disease progressions and
to effectively forewarn their future health states, so that early
interventions may be undertaken to cope with chronic illness.

Until recent years, most of the techniques for disease predic-
tion are traditional machine learning and statistical techniques.
One paradigm of prior works have tackled this question by for-
mulating a regression or classification problem,! and the key idea
can be illustrated in Fig. 1(a). From a probabilistic perspective,
those models attempt to learn a deterministic parametric function
that maps historic records into future outcomes through maxi-
mum likelihood — minimizing a loss function that captures the
distance between the predictions and the observations. Examples
in this paradigm include Wang et al. [1] and Xu et al. [2], where
regression models are used to predict multiple cognitive scores
from neuroimaging features for early recognition of Alzheimer’s
disease. Deep learning techniques, such as recurrent neural
networks (RNNs) and convolutional neural networks (CNNs),
have been introduced to predict disease progression [3]-[9].
These neural networks are designed to recognize a patient’s
sequential patterns and use temporal patterns to predict future
probable scenarios such as diagnosis and prescriptions. Gen-
erally, these methods have advantages in modeling long-term
temporal dependency and learning distributed representations;
however they are still deterministic in nature since a specific
mapping function is usually learned in the training process.
Another line of effort is using statistical techniques to model the
temporal progression of diseases [10]-[15]. A straightforward
approach is to utilize Hidden Markov Model (HMM) to capture
disease state transition and to predict state progression. Even
though these approaches contain internally stochastic units (i.e.,
Markov chains over hidden variables), they often make strong
assumptions about data generation process, have simplified dis-
crete hidden state and are expensive to compute.

We argue that it is difficult to directly apply those prior
approaches to address complex uncertain scenarios often seen in
chronic and progressive diseases. We characterize two challeng-
ing aspects. (i) Progression uncertainty: multiple outcomes are
possible as the diseases progress, in other words, the space of
plausible outputs is multimodal. Take Parkinson’s disease (PD)
for example, it is generally characterized by different stages,
ranging from mild to the most severe. However, ambiguities
exit in determining the clinical stages due to the heterogeneity

"We particularly focus on those classification models that learn a parametric
function to estimate the conditional class probabilities.
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Fig. 1. A schematic illustration for predicting disease progression
given a patient’s prior information (e.g., patient profile and historic medi-
cal records). (a) Deterministic methods typically learn a parametric func-
tion that maps prior information to a unimodal outcome with an optimal
point estimate, which fails to express a complex uncertain scenario
where the output is multimodal and is often unable to inform a decision
with confidence. (b) We propose STOCAST that learn a generative model
to predict the distribution over multiple possible outcomes to effectively
capture the disease progression.

of symptoms and patient conditions, and thus multiple outcomes
are possible. An internally deterministic model is unable to deal
with such uncertainty because it assumes a unimodal output
space and the source of uncertainty simply comes from the local
conditional output distribution. A Markov chain based model
might also fail this challenge due to its over-simplified inter-
nal stochastic structure. (ii) Data uncertainty: patient medical
records are often high-dimensional and sometimes subject to
errors (e.g., clinical assessments with errors, misdiagnosis), rais-
ing acute concern in such complicated progressive disease. Prior
deterministic approaches that assume a Gaussian conditional
distribution to account for measurement noises, or that presume
all patients are correctly diagnosed, lack robustness to tolerate
outliers [16], thus yielding undesired results.

Problem: Given these uncertainty issues, we argue that a more
relevant and challenging question to ask is: what is the proba-
bility distribution of a patient’s health trajectory in the future?
That is, we seek to provide a comprehensive ensemble of future
progression possibilities (Fig. 1(b)), rather than extrapolating a
single point estimate.

Method: To answer this, we propose a novel method, called
Stochastic Disease Forecasting Model (STOCAST). Motivated
from a generative perspective, we assume that future data is
produced through a two-step generative procedure that involves
an intermediate latent variable (see Fig. 2). The latent variable
can specifically address the uncertainty challenge by acting as a
stochastic bridge — its prior distribution conditioned on currently
available information is used to express internal stochasticity,
and a generation procedure conditioned on the latent variable is
used to produce an ensemble of forecasts. On the other hand, the
generative procedure can address the issue of data uncertainty,
as the model allows potential departures of observed data from
patients’ true health states (or health “manifold”) by generating
output from a distribution conditioned on a latent variable.
The objective for learning such a stochastic model is generally

® A
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Fig. 2. A schematic illustration of the proposed STOCAST approach. (i)

The future observation (zf,yf) is generated according to a generative
procedure corresponding to a particular latent variable (zf). (ii) The
latent variable (2%) is drawn from a prior distribution conditioned on the
previously available information (J{Qi,uk). (iiiy The distribution of the

latent variable is inferred from previously available information (3 ;, u*)
and newly observed data.

intractable — to overcome this, we leverage variational Bayesian
approach and reformulate a tractable variational objective. Fur-
thermore, we utilize reparameterization strategy to obtain an
unbiased Monte Carlo estimator of the variational objective,
which can be optimized efficiently by stochastic optimization
techniques.

Neural Network Structure: We introduce a new neural net-
work structure, called STOCASTNET, based on our STOCAST
model. We use neural networks as a way to model it be-
cause it possesses powerful capabilities including nonlinearity,
long-term dependency, distributed representation and easy to
be trained. Specifically, the nonlinearity property enables us
to learn complex nonlinear mapping functions, the long-term
dependency is particularly useful since we need to leverage
patients’ past information to do prediction at a present time, the
distributed representation is central for summarizing patients’
health data into rich compact vectors, and the training can be
done through stochastic gradient descent as neural networks are
typically designed to be differentiable. The STOCASTNET, com-
prising three major components — a prior network, a generation
network and a posterior network, is differentiable everywhere;
therefore it can be trained end-to-end via stochastic optimization
techniques.

The main contributions of this paper include:

® We formulate the problem of disease progression predic-
tion from a novel generative perspective to account for
progression uncertainty. Rather than producing a single
point prediction under the unimodal assumption, we at-
tempt to approximate the overall distribution of future
disease progressions.

® We propose a deep generative model, called STOCAST,
to solve the above problem. In contrary to determinis-
tic approaches, our model consists of internal stochastic
components, which makes it able to handle progression
uncertainty, and robust to data distortion.

® We provide a neural network STOCASTNET based on the
proposed model that can be trained efficiently end-to-end
using stochastic optimization techniques.

® We conduct a set of comprehensive experiments on two
benchmark datasets - Alzheimer’s Disease Neuroimaging
Initiative (ADNI) data and Parkinson’s Progression Mark-
ers Initiative (PPMI) data. Our results demonstrate that
STOCAST is able to achieve robust and superior perfor-
mance compared to deterministic baselines approaches.
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This paper is organized as follows. Section II reviews related
works; Section III presents problem formulation; Section IV
describes our proposed approach and technical details; Section V
provides data descriptions and experimental results, and Sec-
tion VI concludes this paper.

Il. RELATED WORK

We first briefly review existing literature for the task of dis-
ease progression forecasting, with special focus on this work’s
significance by accounting for uncertainty. We then introduce
some basic knowledge about generative models and variational
autoencoder.

A. Disease Progression Forecasting

The accumulation of EHR data has triggered great efforts of
researchers in disease prediction [17]-[22]. Many existing works
formulate the challenge of disease progression prediction as a
regression or classification problem [1], [2], [23]. For example,
to help identify Alzheimer’s disease (AD) at an early stage,
Xu et al. [2] propose a low-rank structured sparse regression
model to foresee patients’ cognitive scores based on current
neuroimaging features, Wang et al. [1] develop a nonlinear
Multi-layer Multi-target Regression (MMR) to achieve a similar
goal. Recent years have witnessed the success of deep learning in
various domains (e.g., public health and social crisis [24]-[26]),
researchers have been applying these techniques to address
disease prediction issues [5], [27]-[29]. Those methods’ effec-
tiveness is often attributed to the ability of neural networks to
learn nonlinear and distribution representation of data, as well
as to capture long-term dependency in sequences. For instance,
Doctor Al [7] is a RNNs-based approach that assesses medical
history of a patient to predict the next visit time as well as
subsequent diagnosis. DeepCare [28] is built upon Long Short
Term Memory (LSTM) units, meanwhile incorporating addi-
tional temporal decay and attention mechanisms to account for
temporal irregularity and importance variation in hospital visits.
Nevertheless, a major limitation in those methods is the deter-
ministic internal structure, lacking considerations of progression
uncertainties in disease forecasting. Besides, there have been
active research in modeling the temporal disease progressions
using machine learning and statistical techniques [10]-[12],
[30]. For example, Wang et al. [10] build an unsupervised prob-
abilistic model that has a Markov Jump Process to characterize
continuous-time disease state transitions and a set of Markov
chains to capture the relations between disease states and co-
morbidity onsets. Jackson et al. [11] develop a multistate Hidden
Markov Model (HMM) to estimate disease state transition rates.
Xiao et al. [12] modifies HMM restricted by demographic data to
model patient health trajectories. Unfortunately, such methods
are typically limited by linear state transitions, over-simplified
discrete hidden states and computational scalability [7]. In this
paper, we solve the disease prediction task with consideration
of progression uncertainty, and propose a novel STOCAST model
that contains internal stochasticity to approximate the distribu-
tion of future health states. Meanwhile, our model is build on

neural networks, thus inherits most powerful capabilities of deep
learning techniques.

B. Generative Models and Variational Autoencoder

Generative modeling is one type of unsupervised learning that
deals with complicated data distributions. It could be interpreted
as learning a generative process by which the observation data
arose [31]. That implies, if we had learned a representative gen-
erative model M for a set of data points x distributed according
to some unknown distribution p(z), we can draw new samples
from the model to obtain a distribution pys(z) that is similar
to the true distribution. Training generative models, particularly
for complicated high-dimensional data, is a challenging task:
it might require strong assumptions about data, or have to
adopt computationally expensive inference process like Markov
Chain Monte Carlo. Recently, some progress has been made
by leveraging neural networks into training generative models.
One of the most popular deep generative networks is Variational
Autoencoder (VAE) [32]. It has weak assumptions about gen-
erative process of data, and can be trained through stochastic
optimization techniques in an efficient way. An extension of
VAE is Conditional Variational Autoencoder (CVAE), which
takes additional knowledge as extra inputs and builds the gen-
erative process conditioned on such inputs [33]. The proposed
STOCAST model is inspired by CVAE in the way that it learns a
generative model conditioned on patients’ medical history and
profile information to forecast a set of future predictions.

Ill. RESEARCH PROBLEM

We use a running example to explain our research problem.
As shown in Fig. 1, a patient k has visited hospital from time to
time irregularly. During each hospital visit at a certain date, his
clinical data shall be collected, such as lab tests and symptoms
(i.e., features) and diagnosis (i.e., labels). Given the sequence
of his medical records, we might be curious about: what are the
possible health progressions for patient k in the near future? Is his
health condition getting better or worse? To formally define our
research problem, we let H* = {(z¥,y% %) = 1,..., 7"} be
the sequence of hospital visits for k, where a:éf represents the
feature vector, yf represents the diagnosis vector, t? is the
timestamp of the j-th visit, and 7" is the total number of visits.
The irregular time interval between two consecutive visits is
denoted by 5;“ = t? — t;{l. Additionally, the patient k’s profile
information, such as demographic data, family disease history
and gene information, is represented by a profile vector u*.

Problem: Given a population of patients, denoted as X, with
data {(u*, 3")|k € K} that comprise both static profiles and
longitudinal clinical observations 3%, = {(.'lrf,yéC , tf)\ Jj<i},
our question is: What is the overall distribution of the patient’s
possible health states at a future time point tf ?In other words, the
goal is to predict, for each patient k, the distribution of possible
health states at a future time point t¥ (often the next hospital
visit), i.e., p(x¥, y¥|HE, ub).

Unlike existing approaches that seek to find an optimal point
(.'z;f* , yf*) in the space of future health states, our proposed
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question requires to estimate the overall distribution of all possi-
ble of future health states p(z¥, y*|H" ,, u*). Such distribution
conveys richer information that helps doctors to make decisions
with greater confidence in a complex uncertain scenario, such as
distribution modality (e.g., unimodal or multimodal), the most
likely future health states, and the extent of the credible regions
for an estimate.

[V. METHOD

This section presents our proposed method, namely
Stochastic Disease Forecasting Model (STOCAST).

A. Two-Step Generative Procedure

In order to tackle the progression and data uncertainty is-
sues, we approach the problem from a generative perspective.
As shown in Fig. 2, we model the generative procedure of
future health data conditioned on currently available information
through two steps: (i) alatent variable 2% is drawn from the prior
distribution pg (2%|3",, u*) conditioned on current knowledge
(J—C'il, k) (dashed arrow); (ii) the output is generated by sam-
pling from the distribution pg (z¥, y?! |zk HE
on both current knowledge (3", u*) and the latent variable
2¥ (line arrow). The @ represents generative parameters. In our
scenario, the health-related data could be of high-dimensional
and involve complicated dependencies between the dimensions,
while latent variable 2% lies in a hidden subspace of much lower
dimensionality than that of the data space. The latent variable z¥
is introduced to allow a generally complicated distribution (over
observed data) to be constructed through a simpler conditional
distribution. Its role is two-folds: (a) it captures the internal
stochasticity from the data, through which the model can pro-
duce an ensemble of predictions as possible outcomes at a future
time point; (b) the output generated at the second step, based on
the distribution conditioned on the latent variable, offers greater
flexibility in modeling the departure of data from the true health
states.

*) conditioned

B. (Variational) Objective Function

Given the two-step generative procedure, we shall be able to
learn the parameters € using maximum likelihood estimation
(MLE):

HE ub)

0= argmaxzzlog/ po(x), y |25,

generation

x po(2F|HE, uP) | dzk. (1)
N————

prior

However, the marginalization of z¥ is generally intractable for
complicated prior and generation functions (e.g., those described
by neural networks). A widely-adopted strategy dealing with
such intractability is variational Bayesian method, i.e., to derive
a variational lower bound to approximate the logarithm of the

marginal probability of the observation. The derivation is as
follows:

logpe( 7.7yz‘g{<'m )

= log (]E%[ po(,yt 2| HE  u )D

o (252l Yl I, uP)

> E% {bgpo(xf,yz » % |}C<w )}

—Eq, |logqe(zilay,yf, HE ub) | £L7(6,¢), ()

posterior

where the inequality can be obtained using Jensen’s inequality.
Here Lf (0,¢) is a single variational lower bound term for
patient k at time ¢¥. Particularly, the lower bound £¥(8,¢)
involves a new probablhty qe(2F |z, y! ,9{’2“ k) expressed
by parameter ¢. It is the variational distribution, or proxy
posterior, introduced to approximate the intractable true poste-
rior pg (2%, y¥, 3%, uF). This proxy posterior is associated
with the posterior process in Fig. 2 (dotted arrow), that the
distribution of latent variable can be inferred by combining
available information and newly observed data. It follows that
the KL divergence of the proxy posterior from the true posterior
distribution is equal to the the difference between the original
log likelihood and the variational lower bound:

KL [qp(=Flak. yl 3 ub) lpo (21 oy, 965 )|

_Eq¢ [loqu,( k|x17yz5g{lzt’ ):|

~Ey, [logpo(al,yt, 281365, uh)|

+10gp0( L’yl ‘j{<z’ )
= —£5(0,¢) + log pe(aF, y¥| 7", ub). 3)

Equation (2) holds if and only if g4 is equal to the true posterior
distribution, i.e., their KL divergence is zero. Thus, we leverage
a tractable proxy posterior g4 to approximate the intractable
true posterior, so as to rewrite the intractable objective function
in (1) into a tractable variational objective function in (2). Then,
the objective can be re-expressed as:

0,6 = argrgisxggﬁf(eﬁ)- “4)

C. Solving Variational Objective Function

We present our solution to the optimization problem expressed
in (4). In particular, we shall differentiate and optimize the vari-
ational objective function with respect to both parameters 6, ¢.
However, according to (2), the lower bound £¥ (8, ¢) contains
two terms: the first term is the expected log joint probability,
and the second term is the entropy of the proxy posterior. Both
terms depends on ¢, making the gradient with respect to ¢
a little problematic. Following the prior works [32], [34], we
employ reparameterization to obtain Monte Carlo gradients of
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Lf(0, ¢) with respect to both parameters 6, ¢. Reparameter-
ization and Monte Carlo Gradients. The reparameterization
trick expresses the latent variable z¥ as an invertible function
of another set of random variables € that does not depend on
parameter @, i.e., 2¥ = g, (e, ®), where we use the black dot e
to indicate all conditional elements {z% y¥, H <l, u*}. In this
way, the expectatlon with respect to the proxy posterior g4 of
any function of z¥, denoted as f(2%), can be expressed as:

Zf (96(”.9).

&)

EQ¢ [f(zf:):l = Ep(e) [f( ¢

where we can randomly draw L samples (") ~ p(€) to approx-
imate the true expectation value. Accordingly, the gradient with
respect to ¢ can be pushed into the expectation, yielding:

V¢Eq¢ [f(zf)] = ]Ep(e) [V¢f (945(67 .))]

~ 23 el (s ). ©
l

Following (5) and substituting f(z%) by the terms inside the
expectation in Lz (0,¢), we obtain an unbiased Monte Carlo
estimator as follows,

~k 1 (1)
‘ci (07¢’) = z Z {Ingo( T; 7yz7 k ‘9{<1’ )
!
10gq¢( Imzvyzvg{im k) ’
Wherezk( - g¢(£(l)7 o), e ~ple). ()

Similarly, we can push the gradient operator \/g ¢ into expecta-
tion to obtain Monte Carlo estimates of the gradients with respect
to 0, ¢, as:

~k 1 (0
Vosl; (0.9) = 7 > Vo logpe(al .yl 2l I3E, ub)
l

_ve¢10gq¢( |:L‘Z,y“f}(’iw )] .

®)

In this way, we are able to use traditional stochastic optimization
(e.g., standard gradient ascent or Adagrad) to update the param-
eters 0, ¢ until their convergence. It has been shown that the
Monte Carlo gradients obtained via reparameterization exhibit
relatively low variance [34], and typically only one sample
(i.e., L = 1) is needed to estimate a noisy gradient, making the
algorithms very efficient [32], [34].

D. STOCAST Neural Network: STOCASTNET

So far, we have presented our solution to maximize the
variational objective function Lf (0, @) by stochastic optimiza-
tion techniques, here we present STOCASTNET, a novel neural
network architecture based on our STOCAST framework. We
decompose the unbiased Monte Carlo estimator in 7 into four

RNN )

]—»: Kk,

)

log C(yf; myr)

@ G

DG M I

O [Ty

log N (f; prt, 0r)

10g/\/(zf(l); 1o, 02)

&)

% Reparameterization
L e®

i) N(0,1)
v LA ke = 0@
logN(z ,[sz )
/ Pr|or0 \ / Postenorq,’)
h’C uF (z’-c hk

i

Fig. 3. Training-time STOCASTNET structure. (a) An auxiliary RNN
summarizing history data into a representation. (b) Three major com-
ponents in STOCAST structure: (i) prior, (ii) generation, (iii) posterior. A
reparameterization layer in between posterior and generation is used to
guarantee data flow as continuous.

parts, yielding:
~k 1 1)
Li (07¢) = ZZ 1ng9( k|zk j{iw )
l 0
+log pa(y!|zt" 35, u®) +log po (25|36 )

© ®

Ok, gt 35 ub) | 9)

@

Fig. 3(b) illustrates the overall training-time STOCASTNET archi-
tecture that produces the above four parts as outputs from three
networks - prior, generative, posterior. We additionally introduce
an auxiliary RNN network parameterized by 1 that maps a
patient’s medical history ﬂ{ii into a summary representation
h}ii (Fig. 3(a)). Besides, we restrict the latent variable to be
a multivariate Gaussian distribution, thus its posterior should
also follow the same distribution. We further assume the output
distribution of features to be Gaussian, and the distribution of
discrete diagnosis Categorical. Below, we discuss three main
networks: prior, generation and posterior.

Prior Network: The prior network should construct a multi-
variate Gaussian distribution over the latent variable conditioned
on history and profile data. Therefore, it takes the concatenation
of history representation and profile vector as input, and outputs
two prior parameter vectors, i.e., the mean vector as well as
the standard deviation vector for prior Gaussian distribution
(Fig. 3(b)):

—log gg (2%

o = pg " ([AE; uM) 00 = o " (RE; w*]),  (10)
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ior prior

where g " and """ are two deterministic functions built by
feed-forward neural networks with parameter 6.

Posterior Network: The proxy posterior gy is used to approx-
imate the intractable true posterior of latent variable. Thus the
posterior network shall take existing knowledge and also newly
observed data as input, and outputs two posterior parameter
vectors, i.e., the mean vector and the standard deviation vector
for posterior Gaussian distribution (Fig. 3(b)):

l"zk = ll’g%t([h’iw’u’ » Ly 7y7,])
(11)

o = ob ([BE, uF 2b, yh),

post post

where p and o o are posterior functions described by
feed-forward neural networks parameterized by ¢. If we di-

rectly draw samples zk( ) from posterior Gaussian distribution
N(p,x,0,x), which is a non-continuous operation and thus has
no grﬁdieﬂt, it would result in an unwanted scenario that we
cannot back-propagate errors through this layer. This is exactly
where reparameterization should come into play. As shown in
Fig. 3(b), we first draw samples for the auxiliary variable £(*)
from a standard Gaussian distribution N(0, 1), and then rely on
the following reparameterization transformation to obtain a set
of samples,

k(l)

=i + 0k ©eW, where e ~N(0,1),  (12)

where © indicates element-wise multiplication. In this way, we
can guarantees smooth data flow from the posterior network to
the generation network.

Generation Network: Given zk ® samples, we concatenate
it with medical history and profile vector to generate features
and diagnosis. The outputs comprise three parameter vectors,
i.e., the mean vector and the standard deviation vector Gaussian
distribution, and the ,, k for Categorical distribution (Fig. 3(b)),
yielding

en k(1) en/r k()
= pg” (l27 BE; ut)) 000 = 0™ (27, hE, ul)),

M
gen k(l) k
ﬂyf Ty ([ h<z7 ]),
where pg™, 5™ and w5 are generative functions described

by feed-forward neural networks with parameter 6. Putting
all together, the STOCASTNET in Fig. 3(b) takes the inputs

{e® 3¢5, uF x¥ y¥) and produces the four outputs {(1) —
(@} corresponding to the four parts in (4):

@ : log N(@h: pigr,01) = log po (k|2 BE, ub),

@ : logClylimy) = log po(yllzt ", h’zl, 5,

@ logN(&h sl 0%) = logpa () RE, ),

@ : logN(2 k()7“zf7az§") log g (2" |y BE ).

13)

We note that the entire STOCASTNET is continuous and dif-
ferentiable, thus it can be trained end-to-end using stochastic
optimization techniques. We present the minibatch training pro-
cess in Algorithm 1. Specifically, in each iteration, we can

8
k =) sk
h< g | T
k 2 gF
u ) i
Fig. 4. The forecasting procedure based on trained STOCASTNET.

Algorithm 1: Minibatch Training of the STOCAST Network.

1: Initialize parameters 6, @

2: repeat

3: Draw a batch of patients K’ from all population K

4:  Draw aset of samples () from N(0,1)

5: Compute Monte Carlo gradients /¢ 4£(6, )
following (16)

6: Update 0, ¢ using the above gradients

7: until convergence of parameters 6, ¢

estimate the Monte Carlo gradients in terms of all population X,
denoted as /g 4L (0, @), using the randomly sampled minibatch
of patients X', yielding:

e PRI

keX' i

Vo,sL(0,4) ~ (14)

E. Forecasting Based on Trained Network

After the STOCASTNET has been trained, we want to use it
to predict the distribution of a patient’s future health condition.
Here we note that, although we cannot give an explicitly analyt-
ical expression in terms of the distribution, we can produce aset
of forecasts to approximate the distribution p(z¥, y#|H" , u®).
As shown in Fig. 4, at prediction time we only need the trained
prior and generation networks to produce forecasts {ﬁ:f,@f},
corresponding to the two-step generative procedure discussed
in Fig. 2. We use the prior network to get the mean and
standard deviation vectors, then draw a set of samples if, and
finally use the generation network to produce a set of forecasts

~k <k
@,9; )
V. EXPERIMENTS

We evaluate our proposed models using two public datasets
from Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database,” and Parkinson’s Progression Markers Initiative
(PPMI) database.?

A. Datasets

1) ANDI Dataset: Alzheimer’s disease (AD) is a chronic
neurodegenerative disease that usually causes problems with
memory, thinking and behaviors. ADNI is a longitudinal multi-
center study that aims to develop clinical, imaging, genetic, and

2www.adni-info.org
3www.ppmi-info.org
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TABLE |
DIAGNOSIS LABELS AND FEATURE CATEGORIES OF ADNI DATA AND PPMI DATA IN OUR EXPERIMENT

ADNI Data PPMI Data
Category | Features Category | Features
Profile \ Age, gender, education, race, marital state Profile \ Age, gender, race, family history, education
AD Assessment Scale (ADAS) Benton Judgment of Line Orientation Test
ADAS Delayed Word Recall (ADASQ4) Hopkins Verbal Learning Test
Mini-Mental State Examination (MMSE) Letter Number Sequencing Test
Clinical Dementia Rating Scale (CDR) Montreal Cognitive Assessment (MoCA)
Everyday Cognition Participant Self Report Symbol Digit Modalities Test
Neuropsychological | Everyday Cognition Subject Partner Report Geriatric Depression Scale
Rey’s Auditory Verbal Learning Test Non-motor The Questionnaire for Impulsive-Compulsive
Logical Memory-Delayed Recall Disorders in Parkinson’s Disease (QUIP)
Montreal Cognitive Assessment (MoCA) State-Trait Anxiety Inventory (STAI))
Digit Symbol Substitution Scales For Outcomes In PD (SCOPA-AUT)
Preclinical Alzheimer’s Cognitive Composite UPenn Smell Identification Test (UPSIT)
REM Sleep Behavior Disorder Questionnaire
Epworth Sleepiness Scale (ESS))
Unified PD Rating Scale (MDS-UPDRS)
Imaging-related FDG-PET, PIB SUVR, MRI measurements Motor Daily Living Scale (ADL)
Physical Activity Scale for the Elderly (PASE)
Biospecimen ‘ Genetics, CSF biomarkers Biospecimen ‘ CSF biomarkers, Genetics

biochemical biomarkers for the early detection and tracking of
AD. The study has three phases:* an initial 5-year study from
2004 (ADNI-1), a 2-year extended study from 2009 (ADNI-
GO), and a 5-year study started from 2011 (ADNI-2). New
participants were recruited during each phase of the study,
and they are followed and reassessed over time to track the
pathology of the disease as it progresses. ADNI data contain
a rich set of heterogeneous features, including demographics,
clinical assessments, cognitive scores, genomic, neuroimaging
biomarkers and biospecimen. In addition, it also includes di-
agnosis labels assigned by doctors, including Control Normal
(CN), Mild Cognitive Impairment (MCI) and AD. The three
levels of diagnosis indicate how severe a patient’s AD symptoms
have progressed. A merged ADNI 1/GO/2 data package, called
“ADNIMERGE,” has been developed which is downloadble
from ADNI data archive. It loads all ADNI data (except genetic
data), documentation, and analysis vignettes.’ Our experiments
depend on a unified dataset in this package, called “adnimerge,”
that contains a diversity of commonly used variables. Table I lists
the detailed ADNI features we have used in our experiment.

2) PPMI Dataset: Parkinson’s disease (PD) is a long-term
degenerative disorder of the central nervous system that mainly
affects motor system. PPMI is a 5-year landmark observational
clinical study aimed at comprehensively evaluating cohorts of
significant interest (e.g., patients with PD, people with high risk,
and those who are healthy) using advanced imaging, biologic
sampling and clinical and behavioral assessments to identify
biomarkers of Parkinson’s disease progression. The PPMI study
takes places at clinical sites sites throughout the Unites States,
Europe, Israel and Australia, and have collected data in a
standardized manner under strict protocols developed by the
steering committee. Because PPMI data do not provide per-visit

4According to the new updates, the 4th phase has started from 2016, but our
experiment does not use data from this phase.
SReferring to https://adni.bitbucket.io/index.html for more information

TABLE Il
DIAGNOSIS EXPLANATION

Diagnosis ‘ Explanation

CN Control normal

MCI Mild cognitive impairment in AD

AD Alzheimer’s disease

Ul Unilateral involvement (PD affects one side of the body)
BI Bilateral Involvement (PD affects both sides)

diagnosis, we consider Hoehn and Yahr (NHY) score as a proxy
label in our experiments. NHY is a widely used system for
the purpose of describing how the symptoms of PD progress,
with discrete scores ranging from O to 5. We recode score 0
into Control Normal (CN) label, score 1 into Unilateral Involve-
ment (U]) label representing minimal or no functional disability
(movement disorder is limited to one side of the body), and
scores 2-5 into Bilateral Involvement (BI) label corresponding
to severe PD symptoms (movement disorder affects both sides
of the body). Table II lists the explanations of diagnosis labels.

3) Data Preprocessing: As patients might be given different
tests in different hospital visits, there are missing values at the
feature level. To prepare the data for further experiment, we first
discard sparse features with a missing rate larger than 50% (since
imputation might introduce undesirable bias), and then exclude
patient sequences that contain no more than three hospital visits.
Then we employ different imputation strategies to fill in missing
data found in diagnosis as well as features: (a) Considering that
the two diseases are irreversible progressive brain disorders,
we do diagnosis imputation following the procedure: (i) if a
patient’s last diagnosis is the same as the next diagnosis, we
replace the current missing point with the diagnosis; (ii) if a
patient has already been diagnosed to be AD/PD, we carry
forward such diagnosis and replace missing data thereafter;
(iii) if a patient’s first observed diagnosis is healthy, we carry
backward such diagnosis and replace missing data prior to this
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TABLE IlI
DATA STATISTICS AFTER PREPROCESSING

Statistics | ADNI PPMI
Number of subjects 1,574 1,093
Number of total visits 11,474 9,421
Feature/label dimension 42/3 56/3
Mean/max sequence length | 7.29/19 visits 8.62/17 visits
Mean time interval 5.96 months 5.27 months
Label imbalance 32%,42%,26%  27%,20%,53%

visit. (b) For feature imputation, we employ the last occurrence
carried forward and mean imputation. Specifically, if a missing
record occurs in a patient’s follow-up hospital visit, we impute it
with the most recently observed value from the patient’s history;
if the records of a specific feature in a patient’s medical history
are all missing, we choose to use the mean value of that feature
calculated from the cohort of patients having same diagnosis
to impute it. Table III reports a series of data statistics after
preprocessing.

B. Baseline Methods

We compare our STOCAST with three state-of-the-art deep
learning approaches in healthcare domain, as well as three
widely-used classifiers.

® Doctor Al [7] is a temporal predictive model built on re-
current neural networks (RNNs). Given longitudinal time
stamped EHR data, it is able to predict the diagnosis and
medication codes for a subsequent visit. In our experiment,
we implement this baseline based on LSTM units.

e T-LLSTM [9], also called “Time-Aware LSTM,” isa LSTM
networks augmented with a temporal decay mechanism
to handle irregular time intervals in longitudinal patient
records. In particular, the memory cell is decomposed
into short- and long-term memories and the former one is
adjusted in a way that longer the elapsed time, the smaller
the effect of the previous memory to the current output.

e RETAIN [8] is an interpretable predictive model for
healthcare based on reverse time attention mechanism. It
learns to allocate attentions to individual hospital visits
and clinical variables, so as to interpret importance of these
factors in prediction task.

e Logistic Regression (LR) is a discriminative probabilistic
model that uses a logistic (or softmax) function to model
the class probabilities given feature variables. Due to its
simplicity and effectiveness, LR has been widely applied
in a diversity of domains.

e Decision Tree (D-Tree) is a commonly used non-
parametric machine learning technique. In classification,
it makes sequential and hierarchical decisions about the
outcomes variable based on input data.

e K-Nearest Neighbors (KNN) is also a non-paremetric
method that attempt to classify a data point by a plurality
vote of its k nearest neighbors, with the data point being
assigned to the class most common along its neighbors.

In particular, the deep learning based approaches take the
entire longitudinal medical records along with patient profile

as inputs and are trained by minimizing the distance between
prediction and observation (i.e., continuous features and discrete
labels). In contrast, the classifiers cannot capture long-term
temporal dependency in disease modeling, therefore we only
consider the current hospital visit along with patient profile
data as inputs. Since the outputs of these classification methods
are restricted to be discrete labels, we ignore the prediction of
features in the training process of such classifiers.

C. Evaluation Metrics

In realistic scenario, people are more concerned about a
patient’s diagnosis in the future, the high-level indicator of
health condition. Therefore, we will particularly focus on the
prediction results of diagnosis, and examine the performances of
distinct approaches. Here we stress that baseline methods output
single point predictions, whereas our STOCAST would produce
an ensemble of forecasts for each test case (100 predictions in
our experiments). To facilitate a fair comparison of STOCAST
and baselines, we replicate the ground truth label for 100 times
to match it with each prediction point of STOCAST. In this way,
some commonly used classification metrics can be applied in
our scenario, including accuracy, precision, recall, F1 score and
Area Under the Receiver Operating Characteristic Curve (ROC
AUQC). In particular, they evaluate different aspects of a model:
accuracy is calculated as the fraction of correct classifications
with respect to the total test cases, precision measures the ability
of a model to identify only the relevant data points, recall
assesses the ability of a model to find all the relevant cases within
a dataset, F1 score can be interpreted as a weighted harmonic
mean of the precision and recall, and ROC AUC is a performance
measurement for classification problem at various threshold
settings. As seen in Table III, the three labels in our datasets
are not balanced, i.e., CN: 32%, MCI: 42%, AD: 26% in ADNI
data, and CN: 27%, UI: 20%, BI: 53% in PPMI data. Therefore,
under such imbalanced multiclass circumstance, we calculate
a micro-average value and a weighted-average value for each
of these metrics, including precision, recall, F1 and AUC. A
micro-average will aggregate the contributions of all classes to
compute the average metric, whereas a weighted-average will
compute the metric independently for each class and then take
the average by accounting for class imbalance. Besides, we also
compute a single ROC AUC value for each of the classes.

D. Experimental Setting

Neural network structure: In our implementation of STOCAST,
all mapping functions - Gaussian means and standard deviations
- in the prior, posterior and generative are three-layered feed-
forward neural networks. The standard deviations have softplus
output layer to ensure non-negativity. Besides, we note that the
deep generative models used in our work have “latent variable
collapse” problem, i.e., the posterior is very close to the prior
thus does not actually listen to the input data, making it unable
to learn a faithful representation of observation data. To avoid
such pitfall, we implement a “skip” version of STOCASTNET by
adding connections that attach latent variables to multiple layers
in the generation network [35], forcing the generation network
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TABLE IV
PERFORMANCE COMPARISON IN DISEASE FORECASTING EVALUATED ON DIAGNOSIS USING ADNI DATA

| ROC AUC Precision Recall F1
Methods Accuracy

‘ CN MCI AD Weighted  Micro ~ Weighted  Micro  Weighted ~ Micro  Weighted =~ Micro
STOCAST \ 0.9163 0.9913  0.9625 0.9804 0.9764 0.9808 0.9164 0.9163 0.9163 0.9163 0.9162 0.9163
Doctor Al 0.8645 0.9757 0.9304 0.9791 0.9577 0.9648 0.8676 0.8645 0.8645 0.8645 0.8651 0.8645
RETAIN 0.8360 0.9576  0.9042  0.9766 0.9403 0.9488 0.8365 0.8360 0.8360 0.8360 0.8362 0.8360
T-LSTM 0.8458 0.9662 09153  0.9801 0.9486 0.9574 0.8460 0.8458 0.8458 0.8458 0.8458 0.8458
LR 0.8589 0.9760 0.9313  0.9800 0.9587 0.9643 0.8590 0.8589 0.8589 0.8589 0.8578 0.8589
D-Tree 0.7973 0.8741  0.7917  0.8847 0.8426 0.8482 0.7969 0.7973 0.7973 0.7973 0.7970 0.7973
KNN 0.7659 0.8960 0.8169  0.9485 0.8768 0.8898 0.7680 0.7659 0.7659 0.7659 0.7653 0.7659

TABLE V
PERFORMANCE COMPARISON IN DISEASE FORECASTING EVALUATED ON DIAGNOSIS USING PPMI DATA

Methods | Accuracy ROC AUC Precision Recall F1

‘ CN Ul BI Weighted  Micro  Weighted  Micro ~ Weighted = Micro Weighted ~ Micro
STOCAST \ 0.7968 0.9876  0.8054  0.8975 0.9030 0.9385 0.7759 0.7968 0.7968 0.7968 0.7779 0.7968
Doctor Al 0.7725 0.9807 0.7253  0.8769 0.8739 0.8913 0.6260 0.7725 0.7725 0.7725 0.6877 0.7725
RETAIN 0.7590 0.9775 0.7434  0.8657 0.8708 0.8962 0.7341 0.7590 0.7590 0.7590 0.7162 0.7590
T-LSTM 0.7672 0.9791  0.6762  0.8623 0.8558 0.8700 0.6219 0.7672 0.7672 0.7672 0.6829 0.7672
LR 0.7178 0.9733  0.7631  0.8787 0.8806 0.8957 0.7507 0.7178 0.7178 0.7178 0.7279 0.7178
D-Tree 0.6722 0.8911  0.5580 0.7153 0.7305 0.7552 0.6720 0.6722 0.6722 0.6722 0.6721 0.6722
KNN 0.6946 0.9436  0.6286  0.8083 0.8081 0.8510 0.6651 0.6946 0.6946 0.6946 0.6744 0.6946

to maintain a strong connection between latent variables and
observation data. In terms of deep learning based baselines, we
construct output layers to generate Gaussian mean and standard
deviation vectors for feature prediction, and Categorical param-
eter vector for diagnosis prediction.

Training details:® The data is shuffled and splitted into train-
ing and validation sets, then we train the model on training and
keep track of loss function on validation. The training process
will be stopped early if there are 10 consecutive steps not
showing any loss reduction. Both STOCAST and deep learning
baselines are implemented by tensorflow,” using the same Adam
optimizer [36] with the same configurations, i.e., the dimension
of latent variable is 32; the dimension of hidden state is 32; the
batch size is 32; and the total number of epochs is 150. The
traditional classifiers are implemented by scikit-learn® package,
where we use optimized parameters:“newton-cg” optimization
solver for logistic regression, the number of neighbors is 5 for
KNN.

E. Performance Evaluation

1) Performance in Next-Step Prediction: Tables IV and V
report the performance comparison of STOCAST and baselines
in the next-visit prediction evaluated by different metrics for
ADNI data and PPMI data, respectively. The best performance
is marked in bold. We can see that our STOCAST outperforms
baseline approaches across distinct metrics for both datasets,
suggesting that our STOCAST method is a promising and robust
approach in disease forecasting. In addition, we can see that

6Source code downloadable at https://github.com/picsolab/StoCast
https://www.tensorflow.org/
8hitps://scikit-learn.org/stable/

deep learning methods achieves relatively better performance
than traditional classifiers, potentially due to their capabilities
such as distributed representation, long-term dependency and
non-linearity. Our STOCAST naturally inherits such capabilities
as it is built based on neural networks, meanwhile it is able to
capture internal uncertainty in disease evolution, making it a
more effective approach.

2) Performance on Different User Groups: To provide a
comprehensive comparison for different approaches, we ex-
amine the performance of STOCAST on different user groups
within each of the two datasets. We divide the population into
two groups — a TR group corresponding to the patients who
have exhibited diagnosis transitions (approximately 33% for
ADNI, and 32% for PPMI), and a NoTR group associated with
the people who do not shown any diagnosis transitions. Such
investigation can help understand the robustness of our model.
Fig. 5 shows that our STOCAST outperforms baselines on both
TR and NoTR groups evaluated by different metrics for both
ADNI and PPMI datasets. We note that, compared to the NoTR
group, i.e., those with stable health condition, the prediction task
for the TR group, i.e., those with unstable health conditions,
is generally more challenging — in terms of obtaining better
scores. The results demonstrate that our STOCAST is able to
effectively and robustly capture both the stable and unstable
disease trajectories, potentially as it listens to observation data
and also maintains certain internal stochasticity.

3) Performance in Multi-Step Forward Prediction: We fur-
ther examine whether STOCAST can maintain such superior
performance if we conduct multi-step forward prediction tasks
- to predict a patient’s diagnosis in the next d-th visit. Fig. 6
shows the performance of different methods as a function of
forward step d assessed by different metrics. It can be seen
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Fig. 5. Performance comparison on two groups of patients within
(a) ADNI and (b) PPMI. Performance is evaluated on diagnosis. TR and
NoTR are for the subset of patients with diagnosis transitions and with-
out any transitions. The y-axis indicates performance score of different
metrics.
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Fig. 6. Performance comparison in multi-step forward prediction for
(a) ADNI and (b) PPMI. Performance is evaluated on diagnosis. The
x-axis indicates forward step d (1-4), and y-axis indicates performance
score.

that STOCAST can still maintain its superior position in the
near future, validating the effectiveness of our method. The
decreasing trend in STOCAST’s performance implies that dis-
ease forecasting becomes harder as we foresee a farther future.
Here we note that baseline approaches exhibits some fluctuations
in their performances tested on PPMI data. It can be explained
by their biased tendency towards the prevailing label (i.e., BI)
in the dataset. We will offer more concrete interpretations by
showing examples in the next subsection.

F. Qualitative Examination

Here we show qualitative results to provide a detailed case
study about the difference between STOCAST and baseline
method (taking Doctor Al as an example). Fig. 7 displays three
patients’ disease trajectories per dataset, i.e., the plots (a—c)
are ADNI examples, and (d—f) are PPMI examples. The x-axis
records a patient’s longitudinal diagnostic labels assigned by
doctors in each visit, and the y-axis indicates the predicted
probabilities for different labels. We use violin plots to describes
the distributions of the ensemble of predictions outputted by

PPMI trajectories

ADNI trajectories
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Fig. 7. Examples of patient disease trajectories described by diagno-
sis labels from (a, b, c) ADNI and (d, e, f) PPMI (better to view in color).
The x-axis is longitudinal diagnosis assigned by doctors (background
color also indicates doctor’s diagnosis), and y-axis is predicted prob-
abilities of different labels. Upper row (violins) shows STOCAST's pre-
diction ensemble and lower row (points) shows baseline’s single-point
prediction. The black dot in violins represents median and the thin line
represents 5%—95% percentile.

STOCAST, and use individual markers to indicate the baseline’s
single-point predictions. Hues and background colors indicate
the diagnosis labels assigned by doctors.

Fig. 7(a) corresponds to a patient who has a relatively stable
MCT state, but the baseline incorrectly predicts that this patient
would recover to CN state in the 4th and 5th visit. In contrast,
our STOCAST gives correct predictions at every step, and even
successfully detect the fluctuations of this patient’s health states
in the 4th and 5th visits, as shown in the shape variations of
violin plots. Fig. 7(b) plots a normal person’s trajectory who has
certain risk of developing AD as doctors assigned MCI in the
5th and 10th visits. For most of the visits, our STOCAST makes
correct decisions confidently (indicated by the shape of CN’s
violins - they are densely clustered around 1.0), except for the
5th visit after doctors assigning a MCI label, where the violins
of CN and MCI are stretched and overlap heavily. We point out
that this is the critical time that a confident forecast decision is
difficult to make, as the doctor has changed the diagnosis from
MCI back to CN in the subsequent five visits. In contrary, the
baseline starts giving a series of wrong predictions — it keeps
predicting MCI in subsequent visits. Fig. 7(c) is a patient who
exhibits a degenerating health trend towards developing AD. Our
STOCAST method is able to closely capture such deterioration
inclination (as CN’s violin is moving downwards and MCI’s
violin is rising upwards), but baseline’s outputs maintain to be a
constant MCI state, failing to forewarn that this patient’s health
is deteriorating.
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We can obtain similar observations in Fig. 7(d—f) based on
PPMI data, among which two patients exhibit gradual transition
from UI to BI (Fig. 7(d), (e)), and one maintains a relatively
stable Ul state (Fig. 7(f)). Based on the results in Fig. 7(d), (e),
we see that our STOCAST is able to well capture the two patients’
health trends from Ul to BI, as BI’s violin is rising upwards while
UD’s is going downwards. By contrast, the baseline produces
incorrect BI predictions long before when doctors give such BI
diagnosis. Similar to Fig. 7(b), the example in Fig. 7(f) contains
an “unexpected” diagnosis CN in the 6th visit after several visits
with UI diagnosis. It is probability a misdiagnosis or at least
an ambiguous diagnosis. The two examples in Fig. 7(b), (f)
demonstrate that our approach is more robust in handling data
uncertainty whereas deterministic baseline fail to tolerant such
potential misdiagnosis. Overall, we find that baseline approach
exhibits a tendency to output Bl label across all hospital visits in
PPMI data, contrary to doctors’ diagnosis. This might be because
BI accounts for the majority of diagnosis labels in the data (ap-
proximately 53% as shown in Table III), therefore the baseline
is trained to be biased towards BI label due to such imbalanced
distribution. This phenomenon can to some extent explain our
observation in Fig. 6(b) that baselines display fluctuations in
their performances in multi-step forward prediction task. As we
increases d (farther prediction), a biased prediction of BI might
become a “good” prediction because patients would gradually
enter into the most severe BI stage. However, such biased
prediction results are not what we expect in realistic application.
Therefore, susceptibility to data imbalance is another disadvan-
tage that prevents deterministic baselines from achieving good
prediction performances. In contrary, STOCAST demonstrates a
superior prediction capability: (i) it can successfully identify
patients’ disease progressions through the smooth movements
of violin plots overtime; (ii) it can offer insights regards the level
of difficulty in prediction tasks through the relative positions of
violin plots for distinct labels (i.e., the closer the harder), and the
level of forecast confidence through the shapes of violins (i.e.,
the more compact the more confident).

VI. DISCUSSION

We developed a novel generative model named STOCAST
to address the problem of disease prediction formulated in an
uncertain context that considers progression uncertainty and
data uncertainty. Application of this method to two longitudinal
clinical datasets - ADNI and PPMI - shows that it achieves
superior and robust performance across different scenarios (e.g.,
different sub-populations and multi-step forward predictions)
assessed by various evaluation metrics.

This work has some limitations. First, it demands a com-
plete longitudinal data which unfortunately might not be met
in reality: missingness can take different types (e.g., missing
at random, missing systematically) due to many reasons (e.g.,
patients drop out studies, data is collected improperly). Without
consideration of missing data types, our preprocessing proce-
dure might introduce bias or affect the representativeness of the
results. To address this issue, future research is needed to develop
methods that take full account of incomplete data without rely-
ing heavily on data preprocessing or imputation. Second, our

analysis are based on two datasets that are processed through
sophisticated study design and standardized data acquisition
and quality control, which might not be representative for the
poor quality problem in many real health data. Besides, we only
examine the effectiveness of our method based on two particular
progressive irreversible brain diseases. One future extension
would be to test the generalizability of this method on a broader
range of diseases (e.g., diseases with recurrent states, with a
large number of potential diagnosis labels) and a variety of
noisy data. Third, this research adopted traditional evaluation
metrics to assess the performance of disease prediction in an
uncertain context. Related studies used the minimum distance
of the closest forecast to the ground truth [37], or estimated the
likelihood of ground truth within the predicted distribution [38].
However, both criteria are flawed because the former unfairly
selects the best guess among all predictions while the latter
is hard to be applied to the case of single point prediction.
Therefore, we call for the research community to address this
open challenge in designing better criteria to compare methods
with stochastic nature to deterministic algorithms.

Among the related research of disease prediction using
ADNI/PPMI data [1], [2], [39], [40], the major contribution of
this research is its focus on addressing progression uncertainty
and data uncertainty, advocating further efforts towards this
direction. Our work has important clinical implications as it
provides richer information for doctors to make decisions with
greater confidence in a complex uncertain scenario, which is
critical in offering patients earlier and more tailored treatments
to defer their health deterioration.
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