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Optimizing respiratory virus surveillance networks
using uncertainty propagation

Sen Pei® '™, Xian Teng?, Paul Lewis® & Jeffrey Shaman® 1™

Infectious disease prevention, control and forecasting rely on sentinel observations; however,
many locations lack the capacity for routine surveillance. Here we show that, by using data
from multiple sites collectively, accurate estimation and forecasting of respiratory diseases
for locations without surveillance is feasible. We develop a framework to optimize surveil-
lance sites that suppresses uncertainty propagation in a networked disease transmission
model. Using influenza outbreaks from 35 US states, the optimized system generates better
near-term predictions than alternate systems designed using population and human mobility.
We also find that monitoring regional population centers serves as a reasonable proxy for the
optimized network and could direct surveillance for diseases with limited records. The proxy
method is validated using model simulations for 3,108 US counties and historical data for two
other respiratory pathogens - human metapneumovirus and seasonal coronavirus - from
35 US states and can be used to guide systemic allocation of surveillance efforts.
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espiratory viruses impose a high morbidity and mortality

burden on human health globally: influenza alone claims

290,000 to 650,000 lives worldwide each year!. Sentinel
surveillance and operational real-time forecasting systems are
decision support tools that help improve the prevention and
control of these pathogens?. A number of forecasting methods for
influenza have been developed recently3-14. In the last few years,
some of these systems have been applied operationally to forecast
influenza outbreaks in the United States!>~17, demonstrating the
feasibility of real-time prediction.

Surveillance data are necessary to support real-time opera-
tional forecasting. However, many locations lack sufficient
resources to maintain high-quality, continuous surveillance!8-20,
This data shortcoming limits infectious disease monitoring and
forecasting at those sites. At the same time, network modeling
approaches that dynamically couple disease transmission across
multiple locations are widely used for infectious disease simu-
lation?!-24, These models have been recently leveraged to
simulate, monitor, and forecast epidemic outbreaks. For instance,
metapopulation models informed by observed human movement
(air-transportation2°-27, mobile phone location23-2%, work com-
muting30-32, etc.) have supported better understanding and
forecasting of the spatial spread of influenza!326:27:33:34  den-
gue??, malaria?8, and COVID-193>-38, Further, statistical corre-
lations of disease activity at multiple sites have enabled improved
surveillance of real-time influenza incidence (i.e., nowcasting)3°.
This coupling of disease activity through time and across loca-
tions suggests that infectious disease monitoring and forecasting
at locations lacking surveillance capacity may be possible. To
support such efforts, there is a need for developing methods that
optimize disease surveillance and forecasting using
incomplete data.

A number of studies have explored the optimization of dis-
ease surveillance systems from a variety of perspectives.
Approaches include the development of a method to select
sentinel providers for influenza in Iowa that maximizes the
population covered by the surveillance network!® and the
design of surveillance systems that sequentially recruit sentinel
sites that most improve system estimation of influenza-like
illness hospitalizations!®. This latter optimization method,
applied to influenza surveillance in Texas!® and arbovirus
surveillance in Puerto Rico*{, employs submodular optimiza-
tion to provide a performance guarantee*!. Another approach
evaluated strategies for selecting sensors in a social network and
found that the optimal choice depends on public health goals,
network structure, and disease transmissibility*2. More
recently, there has been a growing interest in combining and
optimizing the inclusion of non-traditional data sources such as
online search queries and social media activities*3-44,

In this study, we demonstrate that forecasting for locations
without surveillance is possible using data streams from mul-
tiple other locations collectively in a networked, mechanistic,
forecasting system informed by human movement (see
“Materials and Methods”). In this system, a mobility-driven
metapopulation model describing the spatiotemporal trans-
mission of respiratory virus across locations is iteratively
updated using the latest observed incidence!3. Observations
from one location are used to adjust the model state and esti-
mate incidence in other locations, including those without
surveillance. The optimized model is then evolved into the
future to generate forecasts (Fig. 1a). Such networked systems
enable inference and prediction of local disease activity in
locations lacking observations and provide a framework for
designing cost-effective surveillance and forecasting systems in
circumstances constrained by limited resources.

Results

Forecasting with incomplete information. We performed a
preliminary forecasting experiment for influenza outbreaks in 35
US states in which data from a single surveillance site were
omitted. Specifically, we used the ILI (influenza-like illness) rate
among all people seeking medical attention multiplied by the
percentage of patients with laboratory-confirmed influenza type
A, termed ILI+%, to estimate local influenza activity (Fig. 1b,
Methods, Supplementary Note 1 and Supplementary Fig. 1). In
the experiment, a set of forecasts was generated with data inputs
from all 35 states over 9 seasons, and a second set of forecasts
over 9 seasons was generated with data inputs from 34 states,
omitting data from one state in turn (Supplementary Note 2). The
forecast mean absolute error in the omitted state was averaged
over all 35 locations for versions with and without surveillance
data. Forecast errors of near-term predictions for 1- to 4-week
ahead ILI+ indicate that omitting data from a single surveillance
site does not seriously degrade forecast accuracy in the omitted
locations (Fig. 1c and Supplementary Fig. 2).

The ability to estimate and forecast disease activity for
locations without observations poses an additional question: can
a limited number of surveillance sites be optimally identified in
order to support accurate estimation and forecasting of disease
activity at all sites in a network? This question motivates the
design of a quantitative framework for the optimal selection of
surveillance sites within a network. In disease surveillance,
incomplete and imperfect observation leads to uncertainty in
the estimation of disease activity, which disrupts surveillance,
forecasting, and prevention and control efforts. This uncertainty
should be minimized (see discussions in Supplementary Note 3
and Supplementary Fig. 3); however, due to the nonlinear
evolution of infectious disease transmission, uncertainty can grow
over time?%47. This uncertainty propagation compromises the
accuracy of both surveillance and forecasting: accumulated
uncertainty growth from prior observations can undermine the
understanding of the current disease situation (i.e., surveillance),
and prospective uncertainty growth can limit prediction of future
incidence (i.e., forecast). This effect is clearly evident in influenza
forecasting for which smaller uncertainty across a forecast
ensemble generally implies a better prediction®>10:13. Leveraging
this relationship, an effective surveillance network should be
designed to collect the most informative data that best suppresses
uncertainty growth.

Uncertainty propagation. Here we develop a framework to
quantify the spatiotemporal propagation of uncertainty in a
networked forecasting system. We characterize the evolution of
uncertainty in the estimated infected and susceptible populations.
For m locations, a binary vector p = (py,..., p,»)* is used to
record whether location i is selected for surveillance (p;=1) or
omitted (p;=0). We denote the vector of uncertainty as
T

X = (011’ ey O OG5 e ,asm) , where 0, and o represent the
uncertainty (here measured by standard deviation) in the esti-
mated infected and susceptible populations at location i. The
propagation of x undergoes two interacting processes during the
generation of a forecast: uncertainty reduction during model
update using data assimilation methods and uncertainty growth
during model integration (Fig. 1d). The evolution of the uncer-
tainty vector during a short time interval can be approximated
using a linear operation: x — MPx, where the diagonal matrix
P quantifies the uncertainty reduction during data assimilation,
and the matrix M estimates uncertainty growth in the
dynamical model.
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Fig. 1 The networked forecasting system and uncertainty propagation. a Schematic illustration of the networked forecasting system. At each observation
time point, incidence data from 3 locations (vertical arrows) are used to adjust the dynamical model consisting of 5 connected locations. The adjusted
model is then evolved forward (horizontal arrows) to the next observation time point, and ultimately further into the future to generate a forecast. (b) The
national ILI+ rate (blue line) and ILI rate (green line) for the 2008-2009 to 2016-2017 seasons from AFHSB data. Shaded areas indicate the retrospective
forecasting periods. (¢) Comparison of forecast error (mean absolute error) for 1-week ahead prediction with (red line) and without (blue line) surveillance
data. The forecast error at each predicted lead (negative/positive: before/after predicted peak) was averaged over all 35 locations for versions with and
without surveillance data. (d) Uncertainty propagation in the networked forecasting system. At time t, the prior state is updated to a posterior using
available observations (red cross), which constrains the model toward the truth (dash line). The reduction of uncertainty x due to data assimilation and its
growth during model integration can be approximated by x = Px and Px = MPx.
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Fig. 2 Connectivity and uncertainty reduction across 35 US states. a The adjacency matrix for 35 US states. Adjacent states are highlighted by blue
squares. b Numbers of commuters among 35 US states from the 2010 census survey. Color shows the logarithmic-transformed (base 10) commuting
population from resident (x-axis) to work (y-axis) locations. Surveillance data from one state (x-axis) can reduce the uncertainty of infected (¢) and
susceptible (d) populations in other states (y-axis). Color indicates the reduced fraction of variance for infected and susceptible populations (u' and uS).
Results are averaged over data assimilation during nine seasons.

NATURE COMMUNICATIONS | (2021)12:222 | https://doi.org/10.1038/s41467-020-20399-3 | www.nature.com/naturecommunications 3


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

Disease transmission dynamics in different locations are
coupled in the mobility-driven metapopulation model. The
adjacency matrix and numbers of commuters among the
examined 35 US states are presented in Fig. 2a-b. The dynamical
coupling enables the adjustment of infected and susceptible
populations in one location using surveillance data from another.
To quantify uncertainty reduction during this adjustment, we
introduce a diagonal matrix P = diag (Py,..., P,y Ppyy1s -+ Pom)
with the diagonal elements defined as

=TI (=) =TI (=) ©

for j=1,..., m. Here, u]Li

and ufH- are the fractional variance

reduction for the infected and susceptible populations in location
j attributed to the observation from location i. The matrix P
encodes information about the surveillance network configura-
tion p: if a location has observations (i.e., p; = 1), uncertainty in
this location and other dynamically coupled locations is reduced;
otherwise (ie., p;=0), this location makes no contribution to
uncertainty reduction. After data assimilation, the prior model
state is adjusted to a posterior, with the uncertain vector x
updated to Px. The surveillance network configuration p
determines the diagonal elements of P, thus controls the
reduction of the uncertainty vector x.

The values of u!_; and ujSH depend on the quality of the
observation in location i. Particularly, surveillance data with less
uncertainty, characterized by a smaller observational error
variance (OEV), lead to a larger reduction of uncertainty in x.
Thus, to calculate u]{_i and uﬁ_i, a precise estimation of OEV is
required; however, in practice, this is a challenging task as only
one data point (ILI+) is observed per location per week. We
therefore developed a method to quantify the OEV of these
observations and reveal that the OEV of ILI+ is predominantly
affected by the number of laboratory tests (Supplementary
Note 4). In order to properly represent the uncertainty of
observations, we optimized the OEV of ILI4+ from different
locations in retrospective forecasting so that near-term forecast
error is minimized (Supplementary Fig. 4). The forms of cross-
location uncertainty reduction uJLi and ufH- are derived using a
state-space framework (Supplementary Note 5 and Supplemen-
tary Fig 5) and reported in Methods.

We computed the mean values of u]Li and ujSH averaged over
weekly influenza forecasts during 9 seasons. The surveillance data
from one location i mostly affect the uncertainty of its own
infected and susceptible populations (Fig. 2c-d, diagonal
elements); however, for certain locations that are adjacent to
location i or exchange a large number of commuters (Fig. 2a-b),
the variances of infected and susceptible populations are reduced
by the observation from location i as well (Fig. 2c-d, off-diagonal
elements). Such cross-site uncertainty reduction indicates dyna-
mical coupling between these pairs of locations.

The reduced uncertainty Px will propagate in the networked
system during model integration. The evolution of Px within a
short time interval can be approximated using the linear
propagator M of the transmission model that characterizes the
uncertainty growth driven by the linearized model dynamics: Px
— MPx. Specifically, for a short time interval &, the linear
propagator M is estimated by M = I 4 J&t, where Iisa2m x 2 m
unit matrix and J is the Jacobian matrix of the full nonlinear
system (Supplementary Note 5). The linear approximation was
shown to be valid for a few days for influenza transmission
models?’, and has been previously applied in numerical weather
prediction®. Typical respiratory disease surveillance releases data
once per week?; at this rate the linear approximation may become
less accurate. As a consequence, we here limit our attention to

short-term uncertainty propagation. Later retrospective forecast
results indicate that this setting can improve near-term forecasts
for ILI+ up to 4 weeks ahead.

The optimal surveillance problem. To minimize uncertainty
growth during short-term forecast, we aim to minimize the
uncertainty growth rate, quantified by |[MPx||/||x|| = (xT PT MT
MPx)/(x" x)*647, This equation indicates that the uncertainty
growth rate is determined by the dominant eigenvalue, A;, of the
matrix L = PT MT MP. In operation, the matrices P and M vary
by forecast time (i.e., how far into an outbreak a forecast is
initiated) and system state. Thus, to design an optimal surveil-
lance network for a wide range of unknown, potential outbreaks,
we minimize the mean value, (A,), averaged over different fore-
cast initiation time points and system states. Mathematically, the
task of selecting K optimal sentinel sites from m locations is
transformed to the combinatorial optimization problem of find-
ing p that minimizes (\,) under the constraint y - p; = K:

p* = argmin(A, (p, t,z))subject to Zp,- =K,p; € {0,1}. (2)

i=1

Here A, (p, t, z) is the dominant eigenvalue of L at time ¢ with
system state z given the configuration of the surveillance network
p. In order to calculate A;, we run weekly data assimilation in
multiple seasons to estimate the system state z at each week.
Using the surveillance network configuration p and the posterior
model state z at time ¢, we obtain the matrices P and M, and then
compute the dominant eigenvalue A; of L using the power
method*3. The mean eigenvalue is averaged over A(p, ¢, z) for
different weeks and seasons.

The above optimal surveillance problem is a combinatorial
optimization, as the inclusion of one location is impacted by other
selected locations. Solving this problem for large-scale systems is
challenging as the number of configurations grows exponentially
with the system size. However, for a small system forecasting
respiratory disease at the US state level, this problem can be
solved using standard iterative optimization techniques such as
simulated annealing (SA)*° (Methods).

Influenza surveillance networks. We validated the proposed
framework using influenza outbreaks in 35 US states. In order to
perform the optimization, historical outbreak data are required to
infer model parameters and state variables so that simulation
dynamics are representative of real-world influenza transmission
patterns (e.g., seasonality, spatiotemporal spread, typical attack
rate, etc.). Although sentinel providers tend to work locally, in
practice, surveillance data collected from local sentinel providers
are aggregated to coarser geographical scales for public health use.
In particular, the US Centers for Disease Control and Prevention
(CDCQ) releases ILI surveillance data at the state, HHS (the US
Department of Health and Human Services) regional and
national levels®0. Here we work at this operational spatial reso-
lution and optimize the surveillance networks at the state level.

For a given number of observation locations, K, we optimize
the surveillance network using SA. As short-term uncertainty
propagation is suppressed, we expect that the forecast accuracy of
the selected network for near-term targets, for instance, 1- to 4-
week ahead ILI4-, will outperform surveillance systems designed
using heuristic strategies that favor locations with either larger
population size, a larger number of commuters (both incoming
and outgoing directions), or a higher population gradient
(VPopulation, defined as the ratio of location population size to
the average population of its adjacent neighbors).

Among all strategies, SA is best at minimizing the average
dominant eigenvalue (Fig. 3a), and the selected states (for K= 5,
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Fig. 3 Surveillance network optimization for 35 US states. a The average eigenvalues of surveillance networks selected by SA (simulated annealing) (blue
line), population (red line), commuter numbers (orange line), and population gradient (VPopulation) (purple line). Four SA surveillance networks are

displayed in (b). Dark blue states are selected by the SA optimization. Grey states were not included in the analysis. ¢ Forecast error for 1-week ahead ILI+
prediction in the observed (blue line) and omitted (red line) states. Surveillance locations are selected by SA. d Forecast error for 1-week ahead ILI+

prediction using surveillance networks designed by different methods. The horizontal bar on top indicates the statistical significance for SA outperforming
all other methods (two-sided Wilcoxon signed-rank test; red: p < 0.001, orange: p < 0.01, none: p > 0.01). e Log score for 1-week ahead ILI+ prediction
using surveillance networks designed by different methods. f Overlap between the states selected by SA and those selected by other attributes: absolute
humidity (blue line), population (red line), commuter (orange line), VPopulation (purple line), population density (green line), and random walk centrality

(light blue line).

10, 15, 20) are spread across the country (Fig. 3b). We next
performed retrospective forecasting for 9 seasons at the state level
(Methods, Supplementary Note 6 and Supplementary Fig. 6). In
retrospective forecasting, all 35 states were included in the
metapopulation model, but only surveillance data from selected
states were used to calibrate the model (i.e., observations from
unselected states were omitted). Using the surveillance networks
optimized by SA, the forecast error of near-term predictions in
the states without surveillance decreases as more states are
observed, and eventually converges to the forecast error of the
states with observations (Fig. 3c).

To evaluate the performance of surveillance networks selected
using different methods, we compared the forecast error (mean
absolute error) for 1-week ahead ILI+ predictions in all states,
including those with and without surveillance data. In most cases,
the SA approach significantly outperforms the other heuristic
methods by generating surveillance networks that support lower
forecast error (Fig. 3d, Wilcoxon signed-rank test, Methods and
Supplementary Fig. 7). The marginal gain of observing more
locations gradually decreases, highlighting the dominant role that
observations from certain key locations play in constraining
influenza forecast accuracy. Comparison for 2- to 4-week ahead
predictions (Supplementary Fig. 7) additionally corroborate the
effective minimization of uncertainty growth by SA optimization.

The forecasting system generates probabilistic forecasts. Mean
absolute errors reported in Fig. 3c only measure the error of point
prediction (i.e., the mean value of each ensemble forecast). In
order to evaluate the full probabilistic forecasts, we compared the
“log score” (Methods), defined as the logarithmic value of the
probability assigned to an interval around the observed target. In
essence, the log score is a summary statistic measuring the
distribution of ensemble forecast error. This probabilistic scoring
rule has been used in the CDC FluSight forecast challenge!>-17.
Consistent with the results for forecast error, the SA approach
outperforms the other three strategies (Fig. 3e). We further
examined the forecast error and log score at different times

relative to the predicted peak week (Supplementary Figs. 8-9). As
an example, retrospective forecasts were generated for all 35 states
over 9 seasons using surveillance networks consisting of 20 states.
At most predicted lead weeks, the SA optimization supports
better predictions.

To understand the features of networks selected by SA, we
examined their similarity with networks identified using alternate
heuristic methods. In addition to population size, number of
commuters, and population gradient, we also investigated three
other feature-driven surveillance location selection methods and
compared their results with those selected by SA. These features
are: (1) Absolute humidity. In temperate regions, influenza
transmission is favored during periods of lower absolute
humidity®!. As a result, we selected locations with lower average
absolute humidity with priority. (2) Population density. Higher
population density may facilitate influenza transmission due to
higher person-to-person contact frequency. Locations are ranked
by their population density in descending order. (3) Random
walk centrality. In contrast to other local features, random walk
centrality is a global metric determined by the connectivity
among all locations. Specifically, the random walk centrality 7; for
location i is the stationary visiting probability of a random walker
who travels in the network following the transfer probability
specified by the commuting matrix. The values of r; satisfy the

self-consistent equation: r; = Zj C{rj / N, and can be calculated

through iteration (C, is the number of commuters from location j
to i, and N; is the population in location j). For random walk
centrality, locations are ranked according to r; in
descending order.

Among all examined measures, the VPopulation approach is
most similar to the eigenvalue minimization approach using SA
(Fig. 3f), indicating that the optimized network has a tendency to
first select locations with a high VPopulation. For example,
Washington state ranks only 11th and 25th by population and
number of commuters among 35 examined US states; however, it
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ranks 3rd according to VPopulation and is selected with high
priority by the eigenvalue minimization approach.

An attractive alternative approach to SA to solve the optimal
surveillance problem is to sequentially add locations that produce
the largest marginal reduction of the eigenvalue. This greedy
approach is less computationally demanding than the SA
algorithm, and could have a performance guarantee if the
objective function satisfies the submodular property*!. A function
is submodular if the marginal gain of including an additional
location decreases with the number of existing surveillance sites.
Unfortunately, the eigenvalue function we use here does not have
this diminishing return property. Despite this circumstance, we
tested a greedy algorithm approach and compared the resulting
eigenvalue with the one obtained from the SA algorithm
(Supplementary Fig. 10). The eigenvalue curves are identical for
surveillance systems with less than 15 states and remain similar
for larger systems. These findings indicate that the greedy
approach is effective for this 35-state model, and may be
applicable to small- and medium-sized systems. However, for
large systems like the county-level transmission model, the greedy
algorithm is computationally prohibitive due to the cost of
calculating eigenvalues for large-scale matrices.

A proxy method: population gradient. The surveillance network
optimization requires historical records to compute the matrices
M and P. However, disease surveillance data are typically sparse
in underdeveloped settings, especially for emerging infectious
diseases. Moreover, the SA algorithm is computationally expen-
sive and prohibitive for systems with more than a few hundred
locations*. For large-scale systems or diseases with limited his-
torical records, a practical strategy to design surveillance net-
works is needed. Given the similarity between the surveillance
networks selected by SA and VPopulation, we propose that
VPopulation, a metric that is broadly available, can be used to
select surveillance sites.

We examined the performance of VPopulation at finer spatial
resolution using synthetic influenza outbreaks generated at the
county level. Specifically, error-laden observations of ILI+ for 20
outbreaks in the 3108 continental US counties were generated
using the mobility-driven metapopulation model (Supplementary
Note 7). We then compared the forecasting accuracy of
surveillance networks constructed using various, alternate
strategies. Specifically, we considered four other heuristic
approaches: site selection informed by population coverage,
number of commuters, diversity of commuters’ residential
counties, and random selection. A recent study found that
selecting sentinel surveillance sites based on the geographical
diversity of patients visiting healthcare facilities performs well for
arbovirus disease systems*). Here we examined a similar strategy
in which counties with more diverse commuters, quantified by
the Shannon diversity: H= — Xh; In h;, where h; is the fraction of
incoming commuters living in county i, are preferentially
selected. To provide an alternate strategy that avoids geographical
clustering, we also included a strategy that randomly selects
surveillance sites.

Surveillance networks with K of 5%, 10%, 20% up to 100% of
counties were compared. VPopulation outperformed competing
strategies (Fig. 4a, Supplementary Fig. 11). Additionally, the
marginal reduction of forecast error becomes nominal once 10%
of counties are observed. This indicates that observing a small
fraction of dynamically central counties is sufficient to generate
satisfactory estimates and forecasts for both observed and
unobserved locations, and that observing additional sites with
potentially larger noise does not necessarily improve forecast
accuracy. When we compare results at the state level (Fig. 3d), the

advantage of using VPopulation to design surveillance networks
over population and human mobility becomes even more
pronounced. This indicates that spatial scale matters in selecting
optimal surveillance sites. Indeed, determining the appropriate
observational spatial scale that can damp excessive noise while
not compromising resolution is a critical, outstanding problem in
operational forecasting.

We next compared the overlap of counties selected by
VPopulation with those selected by other attributes including
local absolute humidity, population, number of commuters,
population density, random walk centrality, commuter diversity
and random selection (Fig. 4b). With limited overlap, surveillance
networks designed using alternate measures differ considerably
from the network selected by VPopulation, especially for small
numbers of surveillance sites. This comparison indicates that the
information conveyed by VPopulation cannot be represented by
the other examined metrics.

The competitive performance of VPopulation is explained by
its characteristic of avoiding redundant information from clusters
of locations: only one population center tends to dominate a
cluster of counties. The benefit of avoiding informational
redundancy has previously been highlighted!®. To detail this
further, we visualize the surveillance networks composed of 10%
of counties as selected by the VPopulation, Population, Commu-
ter, Diversity, and Random approaches (Fig. 4c). Counties
selected by the population, commuters and diversity approaches
are densely clustered in a few metropolitan areas. In stark
contrast, the networks selected by VPopulation are more evenly
distributed across the US and are thus more representative of
disease activity throughout the country. The randomly selected
sites are also distributed across the US; however, many selected
counties have small populations with possible large observational
noise that could compromise forecasting accuracy.

We quantify geographical clustering using the distribution of
distance between nearest neighbors within the surveillance
network. The population-, commuter- and diversity-based
surveillance networks have on average a closer nearest neighbor
(Fig. 4d), indicating a more clustered structure. The networks
selected by the random strategy are less clustered, but the distance
between nearest neighbors is still slightly lower than that of the
population gradient-based networks. For the random strategy,
more counties are selected in the eastern and middle US, where
counties are more densely distributed. We note that the
VPopulation strategy does not merely seek spatial homogeneity;
it also reflects the spatial distribution of population: the
surveillance sites are denser in areas with more population
(Fig. 4c). The SA algorithm also exhibits cluster-avoiding
tendencies: during combinatorial optimization, once a location
is selected, the chance of selecting an adjacent neighbor is low as
the marginal gain diminishes. This mechanism partially explains
why the surveillance sites selected by the eigenvalue minimization
approach are spread broadly across the US.

We further validated site selection by VPopulation using
historical outbreaks for two additional respiratory pathogens:
human metapneumovirus (HMPV) and coronavirus (CoV) in 35
US states from 2013-2014 to 2016-2017 (Fig. 5a and Supple-
mentary Note 8). HMPV and CoV are common ILI-causing
respiratory viruses, and typically circulate in winter and early
spring. In the dataset, their surveillance records are only available
in 4 seasons, providing an instance of disease with limited data.
Retrospective forecasts for HMPV and CoV outbreaks were
generated using surveillance networks composed of different
numbers of sentinel sites. Although the signals of HMPV and
CoV are noisier than ILI+, due to fewer laboratory tests, the
networked forecasting system is still able to predict near-term
incidence using partial observations, and the VPopulation site
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Fig. 4 Surveillance networks at the county level. a Forecast error for 1-week ahead ILI4 predictions using surveillance networks consisting of 5%, 10%,
20% up to 100% of all counties. Networks are selected by population gradient (VPopulation) (blue line), population (red line), commuter (orange line),
diversity of commuters' residential locations (purple line), and random selection (green line). The statistical significance for population gradient
outperforming all other methods is reported using the horizontal bars on top (two-sided Wilcoxon signed-rank test; red: p < 0.001, orange: p < 0.01, none:
p > 0.01). b Overlap between the counties selected by VPopulation and those selected by other attributes: absolute humidity (blue line), population (red
line), commuter (orange line), population density (purple line), random walk centrality (green line), diversity of commuters’ residential locations (light blue
line), and random selection (dark red line). ¢ Visualization of surveillance networks consisting of 10% of all counties selected by population gradient,
population, commuter numbers, commuter diversity and random selection. Blue curves on the map represent county-to-county commuting. Node color
indicates the ranking using different methods, and node size reflects the population size. d Comparison of the distributions of distance between nearest
neighbors within surveillance networks designed using different strategies: VPopulation (blue), population (purple), commuter (red), diversity of
commuters' residential locations (orange), and random selection (green). Boxes show the median and interquartile, and whiskers show 95% Cl.
Distributions were obtained from n =310, 621, 932, 1243, and 1554 counties, respectively, corresponding to 10%, 20%, 30%, 40, and 50% of all counties.

selection approach identifies key surveillance locations that
support forecasts with lower errors (Fig. 5b-c and Supplementary
Fig. 12). The findings demonstrate that forecasting for a range of
respiratory viruses is possible in locations without surveillance.

Discussion

While similar in performance to SA optimization, VPopulation
remains a static metric, reflecting only the geographical dis-
tribution of population. In contrast, the combinatorial optimi-
zation approach using SA accounts for connectivity between
locations, observation uncertainty, and evolving model dynamics,
and thus more flexibly responds to surveillance practices and
outbreak patterns. Nevertheless, should insufficient data (e.g.,
historical data or estimation of observational error) exist to per-
form SA optimization, the population gradient method could
serve as a reasonable proxy for network site selection. Recent
work has revealed the crucial role that urban centers play in
incubating and driving influenza transmission>2; here we identify
the significant role metropolises and centers of population play in
suppressing uncertainty growth.

As an approximating solution to a combinatorial optimization
problem, the optimized surveillance network may have multiple
configurations with similar performance?’, ie., the network
constructed using SA is only one of these possible choices. If
certain locations are already monitored, such constraint could be

properly incorporated into the optimization problem to find the
conditional optimal design for adding more surveillance sites.

Network approaches are increasingly employed in infectious
disease modeling, surveillance, and forecasting. In these applica-
tions, networked models are usually fitted to real-world obser-
vations using computational Bayesian techniques (e.g., Markov
Chain Monte Carlo”3, particle filter>4, Kalman filter>, approx-
imate Bayesian computation®®, etc.). Through this model cali-
bration process, distributions of prior and posterior model states
are obtained. This allows the direct quantification of uncertainty
propagation when theoretical analysis is intractable and facilitates
the generalization of the framework proposed in this study. One
possible application would be to assess the value of specific
observations and design proactive and adaptive observations (in
space and time) in response to an ongoing outbreak.

In the framework used here, important factors affecting
influenza outbreaks (e.g., vaccination coverage and effectiveness,
mixing patterns within and across age groups, antigenic drift,
etc.) were not explicitly represented in the dynamical model.
Directly accounting for those factors could potentially further
reduce model misspecification and improve the selection of an
optimal network. We also only compared the optimization fra-
mework with simple location features such as population size and
number of commuters. In the future, other more sophisticated
strategies for designing surveillance networks could be considered
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Fig. 5 Retrospective forecasts for human metapneumovirus (HMPV) and
coronavirus (CoV). a The national HMPV+ rate (blue line) and CoV+ rate
(red line) for the 2013-2014 to 2016-2017 seasons from AFHSB data.
Forecast errors for 1-week ahead predictions of HMPV and CoV in 35 US
states from 2013 to 2017 are reported in (b) and (c). We focus on
surveillance networks consisting of less than 10 states because monitoring
more states only provides nominal improvement. The horizontal bar on top
indicates the statistical significance for VPopulation (blue line)
outperforming methods based on population (red line), number of
commuters (orange line), diversity of commuters’ residential locations
(purple line), and random selection (green line) (two-sided Wilcoxon
signed-rank test; red: p < 0.001, orange: p < 0.01, none: p > 0.01).

should data and resource availability be sufficient to support
proper implementation. Also, the framework only considers the
short-term evolution of uncertainty in a linearized approxima-
tion. A quantification of longer-term uncertainty propagation in
the full nonlinear model would be needed to enhance and opti-
mize the forecast of seasonal targets such as peak timing and peak
intensity.

Methods

Data description. We used patient syndromic influenza-like illness (ILI) data and
laboratory test results from the US Armed Forces Health Surveillance Branch
(AFHSB) to estimate state-level respiratory disease activity (Supplementary

Note 1). We focused on the 35 US states in the AFHSB dataset with substantive ILI
and test records. For influenza, we used ILI+, defined as the weekly ILI rate among
patients seeking medical attention multiplied by the concurrent weekly positivity
rate for influenza type A in laboratory testing, to reflect local influenza activity
spanning 9 seasons from 2008-2009 to 2016-2017. For HMPV and CoV,
laboratory test results are only available for 4 seasons from 2013-2014 to
2016-2017. Similarly, we used ILI multiplied by concurrent positivity rates for
these viruses, termed HMPV+ and CoV+ respectively, to estimate disease activity
in each state. The ILI visit and laboratory test data were stored in MySQL 8.0 and
analyzed in MATLAB 2015b. The use of the deidentified dataset in this study was
approved by AFHSB. All relevant ethical regulations were followed.

Local absolute humidity (AH) conditions for each state and county were
obtained from North American Land Data Assimilation System data®”. A daily AH
climatology of conditions averaged over a 24-year period from 1979 to 2002 was
used. County-to-county commuting data, obtained from the 2009-2013 American
Community Surveys, were used to approximate human movement. This dataset,
publicly available from the United States Census Bureau website, provides
commuting population estimates across all US counties®s. Given that the survey
period (2009-2013) is close to the forecast seasons, we assume the commuting
patterns reported in the census survey data are representative of the study period.

Forecasting framework. We describe the transmission of respiratory pathogens
using a metapopulation SIRS (susceptible-infected-recovered-susceptible) model,
in which different locations are connected by human mobility. In practice, detailed
information about human movement is not available in real time. To address this

issue, we assume the volume of human movement between two locations is pro-
portional to the average number of commuters between them. Denote C; as the
number of commuters living in location i and commuting to work in location j.
The number of visitors from location i to j is assumed to be 6C;, where 0 is an

adjustable parameter and C; is the average commuters between location i and j.

The evolution of transmission is then described by

A, BSL I, Ol -, a
@ N b NI Q
i iojzi J#i J
ds; _ N =S -1 ﬁiSiIi 6s; Ai C{:Sj
FI S T D IL AL D (‘”

Here N;, S; and I; are the number of total, susceptible, and infected population in
location 4 D is the average duration of infection; L is the average during of
immunity; and §; is the transmission rate in location i. The last two terms in the
above equations describe the exchange of population due to human movement. For
influenza, the transmission rate is modulated by local AH conditions through fB(t)
= [exp(a x gi(t) + 10g(Romax — Romin)) + Rominl/D, where g;(t) is daily specific
humidity, a measure of AH. The parameter a = — 180 is estimated from laboratory
experiments of the impact of AH on influenza virus survival. Rypay, and Rom, are
the maximum and minimum daily basic reproductive numbers inferred during
data assimilation. For HMPV and CoV, we assume the transmission rate is con-
stant and identical across locations.

The transmission model is coupled with a data assimilation algorithm to
optimize the model state using observed incidence data in real time. Specifically, we
used the Ensemble Adjustment Kalman Filter (EAKF)® in which the distribution
of the model state is represented by an ensemble of state vectors. During data
assimilation, this ensemble is iteratively updated so that the model better estimates
the underlying unknown truth. The optimized dynamical model is then integrated
into the future to generate probabilistic forecasts. Similar model-data assimilation
forecast frameworks have been successfully used for forecasting and inference of a
variety of infectious diseases>®0-95, Details about the system configuration can be
found in Supplementary Note 2. The EAKF algorithm was coded in
MATLAB 2015b.

Cross-location uncertainty reduction. We derived the form of u}Li

and u;_,
]t
analytically using a state-space framework (Supplementary Note 5):
2 2
1 %y s s,

Y2 it T 2\ g2 (5)
(Ri + Jy,)‘rl, (Ri + “y,)gs,

where y; is the prior incidence (i.e., simulated ILI+ rate) in location i, 0y (ay 5)is
4 A0S,

Ui =

the covariance between the prior incidence in location i and the prior infected
(susceptible) population in location j, R; is the OEV of the observation from

location i, (7}2, is the variance of the prior incidence in location i, and of (6§ ) is the
i i 1

variance of the prior infected (susceptible) population in location j. Note that o, 5
(o), S,) quantifies the dynamical coupling between the observed state variable
(simulated ILI+) in location i and the infected (susceptible) population in location
j. In addition, a more uncertain observation in location i (i.e., a larger R;) leads to a
smaller reduction of uncertainty in I; and S;. In practice, the quantities defining u}Li
and u_;
during data assimilation. We validated Eq. (5) in retrospective forecasts of influ-
enza outbreaks over 9 seasons (Supplementary Fig. 5). The actual uncertainty
reduction in the state-vector ensemble agrees well with the values calculated using
Eq. (5).

in Eq. (5) can be computed numerically using the state-vector ensemble

Optimization using simulated annealing. The configuration vector p can be
optimized using general iterative optimization algorithms such as simulated
annealing (SA)%. In SA, the energy function E(p) is defined as E(p) = (A,(p; t, z)).
Starting from a random initial configuration that satisfies Y 1| p; = K, at each step
k, the current configuration vector py is perturbed to pj, under constraint of the
number of selected locations. This procedure can be realized by swapping the states
of a randomly chosen couple of selected and omitted locations. The change in
energy, AE = E(p;() — E(py), can then be calculated directly from the ensemble of
eigenvalues. If AE < 0, the perturbation is accepted and the new configuration is
used as the starting point for the next step p,, = pj. Otherwise, the new con-
figuration is only accepted with a probability P(AE) = exp(—AE/(xTy)), where xp
is a constant and Ty is a time-varying parameter called temperature. In imple-
mentation, the annealing schedule starts from a high temperature T,, where
essentially all perturbations can be accepted, and then gradually cools down to a
low temperature with a decreasing probability of accepting worse configurations.
The algorithm stops when the number of attempts exceeds a certain threshold
value before a new configuration is accepted. The final configuration p.. is the
estimated optimal solution to the optimization problem. In our implementation,
we used xp = 0.1, an exponentially decreasing temperature Ty = 0.9997 and a
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maximal iteration number of k., = 30,000. The stopping threshold was set
at 3000.

Evaluation of retrospective forecasting. We examined forecast accuracy for 4
short-term targets: 1- to 4-week ahead ILI+ rates. The performance of forecast
accuracy is evaluated using two measures: mean absolute error (MAE) and log
score. MAE is calculated as the difference between the predicted ensemble mean
and the observed ILI+ rate. Log score is defined as the log value of the probability
assigned to the interval of width 0.01 centered at the observed ILI+ rate (0.005 on
each side)!1>-17,

In order to examine whether the SA algorithm statistically significantly
outperforms the other three strategies in retrospective forecasting for influenza
outbreaks, we performed a Wilcoxon signed-rank test on three pairs of methods:
SA-Population, SA-Commuter, and SA-VPopulation. The Wilcoxon signed-rank
test is a non-parametric statistical test that compares two paired samples (here,
paired MAEs or log scores generated by both examined methods for the same
location at the same forecast week) to assess whether their mean-ranks differ®s. We
performed a two-sided test to return a p-value indicating that SA outperforms the
other method. We calculated the p-values for the three pairs of comparison (SA-
Population, SA-Commuter, and SA-VPopulation) for each of the four targets. The
p-values reported in Fig. 3d-e are the maximal p-values among all three tests (i.e.,
the worst case). The same analysis was performed for forecasting at the county level
and for HMPV and CoV.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The US commuting data is available at https://www2.census.gov/programs-surveys/
demo/tables/metro-micro/2015/commuting-flows-2015/tablel.xlsx. The disease
surveillance data that support the findings of this study are available from AFHSB but
restrictions apply to the availability of these data, which were used under license for the
current study, and so are not publicly available. Data are however available from the
authors upon reasonable request and with permission of AFHSB. Source data for part of
the figures are provided with this paper. Source data are provided with this paper.

Code availability
The code for the networked forecasting system is deposited in GitHub at https://github.
com/SenPei-CU/SurveillanceOptimization.
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